Differential Equations

DIFFERENTIAL EQUATION: An equation containing an independent variable, dependent variable and differential coefficients of dependent variable with respect to independent variable is called a differential equation.

GENERAL SOLUTION: The solution which contains as many as arbitrary constants as the order of the differential equation is called the general solution of the differential equation.

PARTICULAR SOLUTION: Solution obtained by giving particular values to the arbitrary constants in the general solution of a differential equation is called a particular r solution.

ILLUSTRATIVE EXAMPLES

- (1) Obtain the differential equation of all circles of radius r.
- (2) find the differential equation of all the circles in the first quadrant which touch the coordinate axes.
- (3) Find the differential equation of all conics whose center lies at the origin.

Solve the following differential equations by inspection method

(4)
$$(ydx - xdy)\cos\left(\frac{x}{y}\right) = xy^3(xdy + ydx)$$

(5)
$$\frac{xdx + ydy}{ydx - xdy} = \frac{x\cos^2(x^2 + y^2)}{y^3}$$

(6) $x dy - x dy = (x^2 + y^2) dx$

LINEAR DIFFERENTIAL EQUATIONS OF THE FORM

$$\frac{dx}{dy} + Rx = S$$

Sometimes a linear differential equation can be put in the form

$$\frac{dx}{dy} + Rx = S$$

Where R and S are functions of y or constants.

Note that y is independent variable and x is a dependent variable The following algorithm is used to solve these types of equations

ALGORITHM

<u>STEP I</u> Write the differential equation in the form $\frac{dx}{dy} + Rx = S$ and obtain R and S.

<u>STEP II</u> Find I.F by using I.F. = $e^{\int \mathbf{R} \, d\mathbf{y}}$

<u>STEP III</u> Multiply both sides of the differential equation in step I by I. F.

<u>STEP IV</u> Integrate both sides of the equation obtained is step III w.r.t y to obtain the solution given by $x(I.F.) = \int S(I.F) dy + C$

Where C is the constant of integration. Following examples illustrate the procedure.

- (1) Solve $y \, dx (x + 2y) \, dy = 0$
- (2) If y_1 and y_2 are the solutions of the differential equation $\frac{dy}{dx} + Py = Q$, where P and Q are functions of x alone and $y_2 = y_1 z$, then prove that $z = 1 + C e \int \frac{-Q}{y_1} dx$, where C is an arbitrary constant.

(3) Let u(x) and v(x) satisfy the differential equation $\frac{da}{dx} + P(x)$. u=f(x) and $\frac{dv}{dx} + p(x)$. v=g(x) respectively where p(x), f(x) and g(x) are continuous functions. If u(x₁) > v(x₁) for some x₁ and f(x) > g(x) for all x > x₁, prove that any point (x, y), where x > x₁, does not satisfy the equation y=u(x) and y = v(x).

EQUATIONS REDUCIBLE TO LINEA FORM BERNOULLI'S DIFFERENTIAL EQUATIONS

The equations of the form $\frac{dy}{dx} + Py = Qy^n$ Where P and Q are constants or functions of x alone and n is a non-zero constant other than unity, are known as Bernoulli's equations.

(1) Solve $\frac{dy}{dx} + x\sin 2y = x^3 \cos^2 y$ (2) Solve $\frac{dy}{dx} + \frac{y}{x}\log y = \frac{y}{x^2}(\log y)^2$

Solve each of the following differential equations:

(3) $\frac{dy}{dx} + \frac{y}{x}y^3$ (4) $2\frac{dy}{dx} - y \sec x = y^3 \tan x$ (5) $\frac{dy}{dx} + \frac{y}{x} = xe^x y^2$ (6) $(xy^2 - e^{1/x^3})dx - x^2 y dy = 0$

EQUATIONS SOLVABLE FOR Y

If the given differential equation is expressible in the form y = f(x, p) then we say that it is solvable for y.

Differentiating (i) with respect to x, we get $\frac{dy}{dx} = f\left(x, p\frac{dp}{dx}\right) or p = f\left(x, p, \frac{dp}{dx}\right)$

This equation contain two variables x and p. Solving this equation, we obtain $\phi(x, p, c) = 0$

The solution of differential equation (i) is obtained by eliminating p between (i) and (iii).

Following examples will illustrate the above procedure.

(1) Solve the differential equation $y=(1+p)x+ap^2$, where $P=\frac{dy}{dx}$.

(2) Solve the differential equation $x^2p^2 + xyp - 6y^2 = 0$

(3) A right circular cone with radius R and height H contains a liquid which evaporates at a rate proportional to its surface area in contact with air (proportionally constant = k > 0).