Monotonic Functions

STRICTLY INCREASING FUNCTION A function f(x) is said to be a strictly increasing function on (a, b) if

 $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ all $x_1, x_2 \in (a, b)$

STRICTLY INCREASING FUNCTION A function f(x) is said to be a strictly decreasing function on (a, b) if

$$x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$$
 for all $x_1, x_2 \in (a, b)$

NECESSARY CONDITION Let f(x) be a differentiable function defined on (a, b). Then $\dot{f}(x) > 0$ or < 0 according as f(x) is increasing or decreasing on (a, b).

SUFFICIENT CONDITION

THEOREM Let f be a differentiable real function defined on an open interval (a, b).

COROLLARY Let f(x) be a function defined on (a, b)

- (a) If f'(x) > 0 for all $x \in (a, b)$ except for a finite number of points, where f'(x)=0, then f(x) is increasing on (a, b).
- (b) If f'(x) < 0 for all \approx (a, b0 except for a finite number of points, where f'(x)=0, then f(x) id decreasing on (a, b).

SOME USEFUL PROPERTIES OF MONOTONIC FUNCTIONS

- (1) If f(x) is strictly increasing function on an interval [a, b], then f^1 exists and it is also positive.
- (2) If f(x) is strictly increasing function on an interval [a, b] such that it is continuous, then $f^1 I$ continuous on [f(a), f(b)].
- (3) If f(x) is continuous on [a, b] such that $f'(c) \ge 0$ ($f' \odot > 0$) for eacher(a, b), then f(x) is monotonically (strictly) increasing function on [a, b].
- (4) If f(x) is continuous on [a, b] such that f' (c) ≤ 0 (f' $\otimes < 0$) for each (a, b), then f(x) is monotonically (strictly) decreasing function on [a, b]
- (5) If f(x) and g(x) are monotonically (or strictly) increasing (or decreasing) functions on [a, b], then gof(x) is a monotonically (or strictly) increasing function on [a, b]
- (6) If one of the two functions f(x) and g(x) is strictly (or monotonically) increasing and other a strictly (monotonically) decreasing, then g of (x) is strictly (monotonically) decreasing on [a, b].
- (1) Let $f(x) = \begin{cases} xe^{ax}, x \le 0\\ x + ax^2 x^3, x > 0 \end{cases}$, where a is a positive constant.

Find the intervals in which f' (x) is increasing.

- (2) If $\phi(x) = f(x) + f(1-x)$ and f'' (x) < 0 for all $\mathbf{x} = [0, 1]$. Prove that $\phi(x)$ is increasing in $[0, \frac{1}{2}]$ and decreasing in (1/2, 1].
- (3) Let g(x) = 2f(x/2) + f(2-x) and f''(x) < 0 for all \mathbf{x} (0, 2). Find the intervals of increases and decrease of g(x).