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16. PARTIAL DIFFERENTIATION  
Synopsis :  

1. The partial derivative of f(x,y) with respect to x is the derivative of f(x, y) with respect to x by 

treating y as constant. Also the partial derivative of f(x, y) with respect to y is the derivative of f(x, 

y) with respect to y by treating x as constant. 

2. If v = g(u), u = f(x, y) then  
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3. If u = f(x, y) then dy
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∂ is called total differential of u = f(x, y). It is denoted by du or df. 

4. If u = f(x, y), x = g1(t), y = g2(t) then 
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∂ is called total differential coefficient of 

u = f(x, y) with respect to t. 

5. If f(x, y) = c, where c is a constant then 
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6. If the partial derivatives 
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∂ exists then they are called second order partial derivatives of  

u = f(x, y) and these are denoted by 
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7. If u = f(x, y) is continuous on its domain then fxy = fyx. 

8. If f(x, y) = c where c is a constant then 
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9. A function u = f(x, y) is said to be a homogeneous function of degree or order n in x, y if f(kx, 

ky) = knf(x, y). 



Partial Differentiation  

2 

10. If u = f(x, y) is a homogeneous function of degree n then u = xng ⎟
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11. If u = f(x, y) is a homogeneous function of degree n then u = ynh ⎟⎟
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12. Euler’s Theorem: If u = f(x, y) is homogeneous function of degree n in x, y then x
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13. If u = f(x, y, z) is a homogeneous function of degree n then 
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14. If u = f(x1, x2, ...., xr) is a homogeneous function of degree n then .nu
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15. If u = f(x, y) is a homogeneous function of degree n then 
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