16. PARTIAL DIFFERENTIATION

Synopsis :

1. The partial derivative of $f(x, y)$ with respect to x is the derivative of $f(x, y)$ with respect to x by treating y as constant. Also the partial derivative of $f(x, y)$ with respect to y is the derivative of $f(x$, y) with respect to y by treating x as constant.
2. If $v=g(u), u=f(x, y)$ then
(i) $\frac{\partial v}{\partial x}=\frac{d v}{d u} \cdot \frac{\partial u}{\partial x}$. (ii) $\frac{\partial v}{\partial y}=\frac{d v}{d u} \cdot \frac{\partial u}{\partial y}$.
3. If $u=f(x, y)$ then $\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$ is called total differential of $u=f(x, y)$. It is denoted by du or $d f$.
4. If $u=f(x, y), x=g_{1}(t), y=g_{2}(t)$ then $\frac{\partial f}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}$ is called total differential coefficient of $u=f(x, y)$ with respect to t.
5. If $f(x, y)=c$, where c is a constant then $\frac{d f}{d x}=-\frac{\partial f}{\partial x} / \frac{\partial f}{\partial y}$.
6. If the partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ of $u=f(x, y)$ exist then $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ are also functions of two variables. If the partial derivatives of $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ exists then they are called second order partial derivatives of $u=f(x, y)$ and these are denoted by
(i) $\frac{\partial}{\partial x}\left\{\frac{\partial u}{\partial x}\right\}=\frac{\partial^{2} u}{\partial x^{2}}=f_{x, x}=f_{x x}$
(ii) $\frac{\partial}{\partial y}\left\{\frac{\partial u}{\partial x}\right\}=\frac{\partial^{2} u}{\partial y \partial x}=f_{y, x}=f_{y x}$
(iii) $\frac{\partial}{\partial x}\left\{\frac{\partial u}{\partial y}\right\}=\frac{\partial^{2} u}{\partial x \partial y}=f_{x, y}=f_{x y}$
(iv) $\frac{\partial}{\partial y}\left\{\frac{\partial u}{\partial y}\right\}=\frac{\partial^{2} u}{\partial y^{2}}=f_{y, y}=f_{y y}$
7. If $u=f(x, y)$ is continuous on its domain then $f_{x y}=f_{y x}$.
8. If $f(x, y)=c$ where c is a constant then $\frac{d^{2} y}{d x^{2}}=-\left(\frac{f_{x y} f_{y}^{2}-2 f_{x y} f_{x} f_{y}+2 f_{x y} f_{x}^{2}}{f_{y}^{3}}\right)$
9. A function $u=f(x, y)$ is said to be a homogeneous function of degree or order n in x, y if $f(k x$, $k y)=k^{\mathrm{n}}(\mathrm{x}, \mathrm{y})$.
10. If $u=f(x, y)$ is a homogeneous function of degree n then $u=x^{n} g\left(\frac{y}{x}\right)$, where g is a function of y / x. 11. If $u=f(x, y)$ is a homogeneous function of degree n then $u=y^{n} h\left(\frac{x}{y}\right)$, where h is a function of x / y. 12. Euler's Theorem: If $u=f(x, y)$ is homogeneous function of degree n in x, y then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n u$. 13. If $u=f(x, y, z)$ is a homogeneous function of degree n then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=n u$.
11. If $u=f\left(x_{1}, x_{2}, \ldots ., x_{r}\right)$ is a homogeneous function of degree n then $x_{1} \frac{\partial u}{\partial x_{1}}+x_{2} \frac{\partial u}{\partial x_{2}}+\ldots . . . x_{r} \frac{\partial u}{\partial x_{r}}=n u$.
12. If $u=f(x, y)$ is a homogeneous function of degree n then
i) $x \frac{\partial^{2} u}{\partial x^{2}}+y \frac{\partial^{2} u}{\partial x \partial y}=(n-1) \frac{\partial u}{\partial x}$
ii) $x \frac{\partial^{2} u}{\partial y \partial x}+y \frac{\partial^{2} u}{\partial y^{2}}=(n-1) \frac{\partial u}{\partial y}$
iii) $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=n(n-1) u$.
