15. MAXIMA AND MINIMA

Synopsis :

1. A function $f(x)$ is said to be increasing in an interval I if $x_{1}, x_{2} \in I, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$.
2. A function $f(x)$ is said to be strictly increasing in an interval I if $x_{1}, x_{2} \in I, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$.
3. A function $f(x)$ is said to be decreasing in an interval I if $x_{1}, x_{2} \in I, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)$.
4. A function $f(x)$ is said to be strictly decreasing in an interval I if $x_{1}, x_{2} \in I, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$.
5. A function $f(x)$ is said to be increasing at $x=a$ if $\mathrm{f}(\mathrm{a}-\delta)<\mathrm{f}(\mathrm{a})<\mathrm{f}(\mathrm{a}+\delta)$ for some $\delta>0$
6. A function $f(x)$ is said to be decreasing at $x=a$
if $\mathrm{f}(\mathrm{a}-\delta)>\mathrm{f}(\mathrm{a})>\mathrm{f}(\mathrm{a}+\delta)$ for some $\delta>0$
7. A function $f(x)$ is said to be monotonic in an interval I if $f(x)$ is either increasing or decreasing in the interval I.
8. A function $f(x)$ is said to be increasing at $x=a$ if $f^{1}(a)>0$
9. A function $f(x)$ is said to be decreasing at $x=a$ if $f^{I}(a)<0$
10. A function $f(x)$ is said to be stationary at $x=a$ if $f^{l}(a)=0$. Then $f(a)$ is called stationary value of $f(x)$ at $x=a$ and the point $(a, f(a))$ is called stationary point or turning point of $\mathrm{f}(\mathrm{x})$.
11. If $f(x)$ has either maximum or minimum at $x=a$, then $f^{I}(a)=0$.
12. If $f^{\mathrm{l}}(\mathrm{a})=0$ then $\mathrm{f}(\mathrm{x})$ need not have maximum or minimum at $\mathrm{x}=\mathrm{a}$.
13. A function $f(x)$ differentiable at $x=a$, has maximum at $x=a \Leftrightarrow f^{1}(a)=0, f^{\text {II }}(a)<0$.
14. A function $f(x)$ differentiable at $x=a$, has minimum at $x=a \Leftrightarrow f^{1}(a)=0, f^{\mathrm{Il}}(a)>0$.
15. If $f(x)$ is increasing function in $[a, b]$ then
i) the minimum value of $f(x)$ is $f(a)$.
ii) the maximum value of $f(x)$ is $f(b)$.
16. If $f(x)$ is decreasing function $[a, b]$ then
i) the minimum value of $f(x)$ is $f(b)$.
ii) the maximum value of $f(x)$ is $f(a)$.
17. The maximum value of $f(x)=a \sin x+b \cos x+c$ is $c+\sqrt{a^{2}+b^{2}}$.
18. The minimum value of $f(x)=a \sin x+b \cos x+c$ is $c-\sqrt{a^{2}+b^{2}}$.
19. The maximum value of $a \cos ^{2} x+b \sin ^{2} x$ is a and minimum value $=b$. (if $\left.a>b\right)$
20. The minimum value of $f(x)=a \tan x+b \operatorname{cotx}$ is $2 \sqrt{a b}$ and attained at $\tan x=\sqrt{b / a}$.
21. The minimum value of $f(x)=a^{2} \sec ^{2} x+b^{2} \operatorname{cosec}^{2} x$ is $(a+b)^{2}$ and attained at $\tan x=\sqrt{b / a}$.
22. The maximum rectangle inscribed in a circle is square.
23. The maximum area of a rectangle in a circle of radius r is $2 r^{2}$.
24. The maximum triangle inscribed in a circle is equilateral.
25. The maximum area of a triangle inscribed in a circle of radius r is $\frac{3 \sqrt{3}}{4} r^{2}$.
26. Perimeter of the sector is given. If the area of the sector is maximum, then the angle of the sector is ' 2 ' radians.
27. The semi-vertical angle of a cone of maximum volume with given slant height is $\operatorname{Tan}^{-1} \sqrt{2}$.
28. The semi-vertical angle of a cone of maximum volume with given surface area is $\operatorname{Sin}^{-1}(1 / 3)$.
29. The semi-vertical angle of a cone of maximum volume with given curved surface area is $\operatorname{Sin}^{-1}(1 / \sqrt{3})$
30. The height of a cylinder of maximum volume inscribed in a sphere of radius R is $\frac{2}{\sqrt{3}} R$ and its base radius is $\frac{\sqrt{2}}{\sqrt{3}} R$.
31. The sum of two numbers is ' k '. If the sum of their squares is minimum, then the numbers are $k / 2$, k/2.
32. The sum of two numbers is ' k ' and the least sum of their squares is $\mathrm{k}^{2} / 2$.
33. The sum of two numbers is ' k '. If their product is maximum, then the numbers are $k / 2, k / 2$.
34. The sum of two positive numbers is k . If the sum of their squares is minimum, then the numbers are $\mathrm{k} / 2, \mathrm{k} / 2$.
35. The product of two positive numbers is k . If the sum of their squares is minimum, then the numbers are $\sqrt{\mathrm{k}}, \sqrt{\mathrm{k}}$.
36. Sum of two numbers is ' k '. If the product of the square of the first and cube of the second is maximum, then the numbers are $\frac{2 \mathrm{k}}{5}, \frac{3 \mathrm{k}}{5}$.
37. The hypotenuse of a right angled triangle is ' a '. If the area of the triangle is maximum. Then the sides are $\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}$.
38. Two sides of a triangle are given. If the area of the triangle is maximum, then the angle between sides is $\pi / 2$.
39. The sum of the hypotenuse and side of a right angled triangle is given. If the area is maximum, then the angle between the sides is $\pi / 3$.
40. If $a>0, b>0, x>0$, the least value of $f(x)=a x+\frac{b}{x}$ is $2 \sqrt{a b}$.
41. The sides of a rectangle, with maximum perimeter, inscribed in a semi circle of radius R are $\frac{4 R}{\sqrt{5}}, \frac{R}{\sqrt{5}}$
