14. TANGENT AND NORMALS

Synopsis:

1. The gradient of the curve $y=f(x)$ at $P\left(x_{1}, y_{1}\right)$ is $\left(\frac{d y}{d x}\right)_{P}$.
2. The equation of the tangent at $P\left(x_{1}, y_{1}\right)$ to the curve $y=f(x)$ is $y-y_{1}=m\left(x-x_{1}\right)$ where $m=\left(\frac{d y}{d x}\right)_{P}$.
3. The equation of the normal at $P\left(x_{1}, y_{1}\right)$ to the curve $y=f(x)$ is $y-y_{1}=-\frac{1}{m}\left(x-x_{1}\right)$ where $m=$ $\left(\frac{d y}{d x}\right)_{P}$.
4. Let θ be the angle between two curves $y=f(x), y=g(x)$ at their point of intersection P.
i) The two curves are said to touch each other at P if $\theta=0$.
ii) The two curves are said to cut orthogonally at P if $\theta=\pi / 2$.
5. Let $\mathrm{m}_{1}, \mathrm{~m}_{2}$ be the gradients of two curves at their point of intersection P. If θ is the acute angle between the curves at P , then $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$.
6. Let $\mathrm{m}_{1}, \mathrm{~m}_{2}$ be the gradients of two curves at their point of intersection P . Then
i) The two curves touch each other at $\mathrm{P} \Leftrightarrow \mathrm{m}_{1}=\mathrm{m}_{2}$.
ii) The two curves cut each other orthogonally $\Leftrightarrow \mathrm{m}_{1} \mathrm{~m}_{2}=-1$.
7. If two curves touch each other at a point P , then the two curves have a common tangent and common normal at P .
8. Let $y=f(x)$ be a curve and P be a point on the curve. Let the tangent at P to the curve meet x-axis at T and the normal at P to the curve meet x -axis at N . Let Q be the projection of P on x -axis. Then (i) PT is called length of tangent (ii) PN is called length of normal (iii) QT is called subtangent (iv) QN is called subnormal of $y=f(x)$ at P.
9. Let $P\left(x_{1}, y_{1}\right)$ be a point on the curve $y=f(x)$ and let $\left(\frac{d y}{d x}\right)_{P}=m$. Then
i) the length of the tangent to the curve at P is $\left|\frac{y_{1} \sqrt{1+m^{2}}}{m}\right|$
ii) the length of the normal to the curve at P is $\left|y_{1} \sqrt{1+\mathrm{m}^{2}}\right|$.
iii) the subtangent to the curve at P is $\left|y_{1} / \mathrm{m}\right|$.
iv) the subnormal to the curve at P is $\left|\mathrm{y}_{1} \mathrm{~m}\right|$.
10. To any curve $y=f(x)$, length of S.T. and ordinate, length of S.N. are in G.P., whose common ratio is the slope of the tangent m .
11. The angle between the curve $y^{2}=4 a x$ and $x^{2}=4 b y$
i) at the origin is $/ 2$
ii) at the other point is $\operatorname{Tan}^{-1}\left[\frac{3 a^{1 / 3} b^{1 / 3}}{2\left(a^{2 / 3}+b^{2 / 3}\right)}\right]$.
12. The angle between the curves $y^{2}=4 a x, x^{2}=4 a y$ is $/ 2$ at the origin, $\operatorname{Tan}^{1}(3 / 4)$ at $(4 a, 4 a)$.
13. The angle of intersection of the curves $x y=a^{2}, x^{2}+y^{2}=2 a^{2}$ is zero or .
14. The angle of intersection of curves $y=a^{x}$ and $y=b^{x}$ is $\operatorname{Tan}^{2}\left[\frac{\log a-\log b}{1+\log a \log b}\right]$.
15. Angle between the curves $y=\sin x$ and $y=\cos x$ at the common point of intersection is $\operatorname{Tan}^{1}(2 \sqrt{2})$.
16. The condition that the curves $a_{1} x^{2}+b_{1} y^{2}=1$ and $a_{2} x^{2}+b_{2} y^{2}=1$ may intersect orthogonally is $\frac{1}{\mathrm{a}_{1}}-\frac{1}{\mathrm{a}_{2}}=\frac{1}{\mathrm{~b}_{1}}-\frac{1}{\mathrm{~b}_{2}}$.
17. The angle of intersection of curves $\frac{x^{2}}{a^{2}+k_{1}}+\frac{y^{2}}{b^{2}+k_{1}}=1$ and $\frac{x^{2}}{a^{2}+k_{2}}+\frac{y^{2}}{b^{2}+k_{2}}=1$ is $/ 2$.
18. If the curves $y^{2}=4 a x$ and $x y=c^{2}$ cut orthogonally, then $c^{4}=32 a^{4}$.
19. If the curves $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $x y=c^{2}$ intersect orghogonally then $a^{2}=b^{2}$.
20. If the curves $x y=k$ and $y^{2}=x$ are orthogonally, then $8 \mathrm{k}^{2}=1$.
21. The slope of the tangent to the curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ at (a, b) is b / a.
22. The slope of the tangent to the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at point is $-\frac{b}{a} \cot \theta$.
23. The slope of the tangent to the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at point is $\frac{b}{a} \operatorname{cosec} \theta$.
24. Equation of the tangent to the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at point is $\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$.
25. Equation of the normal at point is $\frac{a x}{\cos \theta}+\frac{b y}{\sin \theta}=a^{2}-b^{2}$.
26. Equation of the tangent to the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at point is $\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1$
27. The sum of the intercepts on the axes made by the tangent to the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ at any point is 'a'.
28. At any point on the curve $y=f(x)$ if the subnormal is constant, then the curve is a parabola.
29. The length of the intercept of the tangent between the co-ordinate axes to the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ at any point is ' a ' (constant).
30. For the curve $\mathrm{x}^{\mathrm{m}} \cdot \mathrm{y}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}+\mathrm{n}}$, the portion of the tangent intercepted between the axes is divided at its point of contact in the ratio $\mathrm{AP}: \mathrm{PB}=\mathrm{n}: \mathrm{m}$.
31. At any point on the curve $x y=c^{2}$, the sub normal varies as cube of the ordinate of the point.
32. For the curve $y^{2}=4 a x$ the ratio of the sub tangent to the abscissa of the point is $2: 1$.
33. Area of the triangle formed by the tangent at any point on the curve $x y=c^{2}$ and the co-ordinate axes is $2 \mathrm{c}^{2}$ sq.units.
