14. TANGENT AND NORMALS

Synopsis :

- 1. The gradient of the curve y = f(x) at $P(x_1, y_1)$ is $\left(\frac{dy}{dx}\right)_P$.
- 2. The equation of the tangent at P(x₁, y₁) to the curve y = f(x) is $y-y_1 = m(x-x_1)$ where $m = \left(\frac{dy}{dx}\right)_{a}$.
- 3. The equation of the normal at P(x₁, y₁) to the curve y = f(x) is $y-y_1 = -\frac{1}{m}(x-x_1)$ where $m = \left(\frac{dy}{dx}\right)_{p}$.
- 4. Let θ be the angle between two curves y = f(x), y = g(x) at their point of intersection P.
 i) The two curves are said to touch each other at P if θ = 0.
 ii) The two curves are said to cut orthogonally at P if θ = π/2.
- 5. Let m_1 , m_2 be the gradients of two curves at their point of intersection P. If θ is the acute angle between the curves at P, then $\tan \theta = \left| \frac{m_1 m_2}{1 + m_1 m_2} \right|$.
- 6. Let m₁, m₂ be the gradients of two curves at their point of intersection P. Then
 i) The two curves touch each other at P ⇔ m₁ = m₂.

ii) The two curves cut each other orthogonally $\Leftrightarrow m_1m_2 = -1$.

- 7. If two curves touch each other at a point P, then the two curves have a common tangent and common normal at P.
- 8. Let y = f(x) be a curve and P be a point on the curve. Let the tangent at P to the curve meet x-axis at T and the normal at P to the curve meet x-axis at N. Let Q be the projection of P on x-axis. Then is called length of tangent (ii) PN called length of normal (i) PΤ is (iii) QT is called subtangent (iv) QN is called subnormal of y = f(x) at P.
- 9. Let P(x₁, y₁) be a point on the curve y = f(x) and let $\left(\frac{dy}{dx}\right)_{P} = m$. Then

i) the length of the tangent to the curve at P is $\frac{y_1\sqrt{1+m^2}}{m}$

- ii) the length of the normal to the curve at P is $|y_1\sqrt{1+m^2}|$.
- iii) the subtangent to the curve at P is $|y_1/m|$.
- iv) the subnormal to the curve at P is $|y_1m|$.
- 10. To any curve y = f(x), length of S.T. and ordinate, length of S.N. are in G.P., whose common ratio is the slope of the tangent m.

11. The angle between the curve $y^2 = 4ax$ and $x^2 = 4by$ i) at the origin is /2ii) at the other point is $Tan^{1} \left[\frac{3a^{1/3}b^{1/3}}{2(a^{2/3} + b^{2/3})} \right]$. 12. The angle between the curves $y^2 = 4ax$, $x^2 = 4ay$ is $\sqrt{2}$ at the origin, $Tan^{-1}(3/4)$ at (4a, 4a). 13. The angle of intersection of the curves $xy = a^2$, $x^2 + y^2 = 2a^2$ is zero or . 14. The angle of intersection of curves $y = a^x$ and $y = b^x$ is $Tan^1 \left[\frac{\log a - \log b}{1 + \log a \log b} \right]$. 15. Angle between the curves y = sinx and y = cosx at the common point of intersection is Tan¹($2\sqrt{2}$). 16. The condition that the curves $a_1x^2 + b_1y^2 = 1$ and $a_2x^2 + b_2y^2 = 1$ may intersect orthogonally is $\frac{1}{a_1} - \frac{1}{a_2} = \frac{1}{b_1} - \frac{1}{b_2}$. 17. The angle of intersection of curves $\frac{x^2}{a^2+k_1} + \frac{y^2}{b^2+k_2} = 1$ and $\frac{x^2}{a^2+k_2} + \frac{y^2}{b^2+k_2} = 1$ is /2. 18. If the curves $y^2 = 4ax$ and $xy = c^2$ cut orthogonally, then $c^4 = 32a^4$. 19. If the curves $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $xy = c^2$ intersect orghogonally then $a^2 = b^2$. 20. If the curves xy = k and $y^2 = x$ are orthogonally, then $8k^2 = 1$. 21. The slope of the tangent to the curve $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ at (a, b) is \tilde{b}/a . 22. The slope of the tangent to the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at point is $-\frac{b}{a}\cot\theta$. 23. The slope of the tangent to the curve $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at point is $\frac{b}{a} \csc \theta$. 24. Equation of the tangent to the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at point is $\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1$. 25. Equation of the normal at point is $\frac{ax}{\cos \theta} + \frac{by}{\sin \theta} = a^2 - b^2$. 26. Equation of the tangent to the curve $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at point is $\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$ 27. The sum of the intercepts on the axes made by the tangent to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at any point is 'a'. 28. At any point on the curve y = f(x) if the subnormal is constant, then the curve is a parabola. 29. The length of the intercept of the tangent between the co-ordinate axes to the curve $x^{2/3} + y^{2/3} = a^{2/3}$ at any point is 'a' (constant).

- 30. For the curve $x^m \cdot y^n = a^{m+n}$, the portion of the tangent intercepted between the axes is divided at its point of contact in the ratio AP:PB = n:m.
- 31. At any point on the curve $xy = c^2$, the sub normal varies as cube of the ordinate of the point.

- 32. For the curve $y^2 = 4ax$ the ratio of the sub tangent to the abscissa of the point is 2:1.
- 33. Area of the triangle formed by the tangent at any point on the curve $xy = c^2$ and the co-ordinate axes is $2c^2$ sq.units.