MAGNETISM

2.COUPLE

POINTS TO REMEMBER

1. Couple acting on a bar magnet in a uniform magnetic field. ?

- i) When a magnet with magnetic moment M is suspended in a uniform field of induction B at an angle with the field direction then the couple acting on the magnet, $\tau = MB \sin \alpha$ and vectorially $\overline{\tau} = \overline{M} \times \overline{B}$
- ii) When $=90^{\circ}$, τ is maximum.

If $|\tau_{\text{max}}| = MB$. If $= 90^{\circ}$ and B = 1 $\tau_{\text{max}} = M$

- iii) When $= 0^{\circ}$ Torque is zero In an uniform magnetic field a bar magnet experiences only a couple but no net force. Therefore it has only rotatory motion.
- iv) In a non-uniform magnetic field a bar magnet experiences a couple and also a net force. So it undergoes both rotational and translational motion.
- v) A bar magnet of moment M is initially parallel to the magnetic field of induction B. The angle through which it must be rotated so that it experiences half of the maximum couple is 30°.

Short Answer Questions:

1. Derive the equation for the couple acting on a bar magnet in a uniform magnetic field and hence deduce the definition of 'magnetic moment'? (June 2010,March2009)

Ans: Consider a bar magnet NS of pole strength m and length 2l placed in a uniform magnetic field of indirection B. Let the axis of the bar magnet makes an angle θ with the direction of the field as shown. The north pole of the magnet experience a force mB in the direction of the field are the south pole experience a force mB in a direction opposite to the field. Hence the magnet experiences two equal and opposite forces which form a couple and there by the magnet rotates and align itself in the direction of the field.

Moment of couple (c) (or) torque (τ) = force × perpendicular distance between the forces.

From the diagram, in the triangle NSP, $\sin \theta = \frac{SP}{NS}$

(or) $SP = NS \sin \theta = 2l \sin \theta$

 $\tau = mB \times SP = mB \times 2l\sin\theta$

$$\therefore \tau = MB\sin\theta \ (or) \ \tau = \mu_0 MH\sin\theta$$

Where M(=2lm) is called the moment of the magnet

In the vector form, $\overline{\tau} = \overline{M} \times \overline{B}$

Where the direction of the torque is perpendicular to the plane containing \overline{M} and \overline{B} .

Definition of M : If B=1T and $\theta = 90^{\circ}$ then $\tau = M$

Moment of the magnet is numerically equal to the torque acting on the magnet when it is placed at right angles to a uniform magnetic field of unit induction.

Unit of M: N-m/tesla

vi)

Very Short Answer Questions:

1. When is the couple acting on a bar magnet in a uniform magnetic field (i) maximum, (ii) minimum ?

Ans :i) When the bar magnet is at right angles to the direction of uniform magnetic field $(\theta = 90^{\circ})$, the torque on the magnet is maximum $(\tau_{max} = MB)$

(ii) When the magnet is parallel to the direction of uniform magnetic field ($\theta = 0^0$), the torque on the magnet is minimum ($\tau_{min} = 0$).

SOLVED PROBLEMS

- 1. A bar magnet of length 10cm and pole strength 2 Am is making an angle 60⁰ with a uniform magnetic field of induction 50 Tesla. Find the couple acting on it.
- **Sol:** Couple acting on the magnet, $C = MB Sin\theta$

Magnetic moment (M) = 21 $m = 0.1 \times 2 = 0.2 Am^2$; B = 50T; $\theta = 60^0$

$$C = MB\sin\theta = 0.2 \times 50 \times \sin 60^{\circ} = 10 \times \frac{\sqrt{3}}{2} = 8.366 Nm$$

- 2. A magnetic needle is acted upon by two fields of induction B_1 and B_2 respectively having an angle of 60^0 between them. The magnetic needle makes an angle of 15^0 with the direction of B_1 and comes to equilibrium. If the magnitude of B_1 is $1.2 \times 10^{-2} T$, find the value of B_2 .
- **Sol:** Let 'M' be the magnetic moment of the needle

Angle between the two fields = 60°

The angle between the needle and $B_1 = \theta_1 = 15^\circ$

Angle between the needle and $B_2 = 45^{\circ}$

Also, $B_1 = 1.2 \times 10^{-2} T$.

At equilibrium, M $B_2 \sin \theta_2 = M B_1 \sin \theta_1$

$$\therefore B_2 = \frac{B_1 \sin \theta_1}{\sin \theta_2} = \frac{1.2 \times 10^{-2} \sin 15^0}{\sin 45^0} = 4.392 \times 10^{-3} T$$

Unsolved Problem

- 1. If the maximum couple acting on a magnet in a field of induction 0.2 Tesla is 10Nm, what is its magnetic moment?
- **Sol**: B = 0.2 Tesla, $\tau = 10Nm$

Maximum torque $(\tau) = MB$ $(\because \theta = 90^{\circ})$

10 = M (0.2)

: Magnetic moment (M) = $\frac{10}{0.2} = 50Am^2$

- 2. The maximum torque acting on the magnet of length 2×10^{-1} m in a uniform magnetic field having induction 2×10^{-1} Tesla is 10 Nm. Calculate its pole strength.?
- **Sol:** Maximum torque = MB = 10 N m

Length of the magnet $2l = 2 \times 10^{-1} m$.

Magnetic induction field strength $B = 2 \times 10^{-1} Tesla$

For maximum torque, $\theta = 90^{\circ}$

Pole strength $m = \frac{\tau}{2lB\sin\theta} = \frac{10}{2 \times 10^{-1} \times 2 \times 10^{-1}} = 250 Am$

- 3. Calculate the moment of couple required to keep a bar magnet of magnetic moment $2 \times 10^2 Am^2$ in a uniform field of induction 0.36T at an angle 30^0 with the direction of uniform field?
- **Sol:** $M = 2 \times 10^2 A m^2$; B = 0.36 T; $\theta = 30^0$

Moment of couple $(\tau) = MB\sin\theta$

 $\tau = 2 \times 10^2 \times 0.36 \times \sin 30^0 = 36$ Nm.

- 4. When a bar magnetic is placed at 90° to uniform magnetic field, it is acted upon by a couple which is maximum. For the couple to be half of the maximum value, at what angle should the magnet be inclined to the magnetic field (B)?
- **Sol:** <u>case 1:</u> From $\theta_1 = 90^\circ$

$$\tau = MB Sin \theta$$

$$\tau = \tau_{\max} \sin \theta_1 = 1 \qquad (\because \theta_1 = 90^\circ)$$

$$\Rightarrow \tau_{\max} = MB$$

$$\underline{Case(2)}: \tau = \frac{1}{2}\tau_{\max}$$

$$\Rightarrow MB Sin\theta_2 = \frac{1}{2}\tau_{\max} = \frac{1}{2}(MB) \qquad \Rightarrow Sin\theta_2 = \frac{1}{2} = Sin 30^0 \qquad \Rightarrow \theta_2 = 30^0$$

ASSESS YOURSELF:

1. Two magnets of magnetic moments M_1 and M_2 are joined are joined at their centers to form a cross (perpendicular to each other). The combination is suspended in a uniform magnetic field directed vertically upwards. It stands in equilibrium when either of them makes an angle of 45^0 with the vertical field. What is the ratio of their magnetic moments?

Ans: $M_1: M_2 = 1:1$