MAGNETISM

2.COUPLE

POINTS TO REMEMBER

1. Couple acting on a bar magnet in a uniform magnetic field. ?
i) When a magnet with magnetic moment M is suspended in a uniform field of induction B at an angle \square with the field direction then the couple acting on the magnet, $\tau=\mathrm{MB} \sin \square$ and vectorially $\bar{\tau}=\vec{M} \times \vec{B}$
ii) When $\square=90^{\circ}, \tau$ is maximum.

If $\left|\bar{\tau}_{\text {max }}\right|=$ MB. If $\square=90^{\circ}$ and $\mathrm{B}=1 \tau_{\text {max }}=\mathrm{M}$
iii) When $\square=0^{\circ}$ Torque is zero In an uniform magnetic field a bar magnet experiences only a couple but no net force. Therefore it has only rotatory motion.
iv) In a non-uniform magnetic field a bar magnet experiences a couple and also a net force. So it undergoes both rotational and translational motion.
v) A bar magnet of moment M is initially parallel to the magnetic field of induction B. The angle through which it must be rotated so that it experiences half of the maximum couple is 30°.

Short Answer Questions:

1. Derive the equation for the couple acting on a bar magnet in a uniform magnetic field and hence deduce the definition of 'magnetic moment'?
 (June 2010,March2009)

Ans: Consider a bar magnet NS of pole strength m and length 21 placed in a uniform magnetic field of indirection B. Let the axis of the bar magnet makes an angle θ with the direction of the field as shown. The north pole of the magnet experience a force mB in the direction of the field are the south pole experience a force mB in a direction opposite to the field. Hence the magnet experiences two equal and opposite forces which form a couple and there by the magnet rotates and align itself in the direction of the field.

Moment of couple (c) (or) torque $(\tau)=$ force \times perpendicular distance between the forces.
From the diagram, in the triangle NSP, $\sin \theta=\frac{S P}{N S}$

$$
\begin{aligned}
& \text { (or) } S P=N S \sin \theta=2 l \sin \theta \\
& \tau=m B \times S P=m B \times 2 l \sin \theta \\
& \therefore \tau=M B \sin \theta \text { (or) } \tau=\mu_{0} M H \sin \theta
\end{aligned}
$$

In the vector form, $\bar{\tau}=\bar{M} \times \bar{B}$
Where the direction of the torque is perpendicular to the plane containing \bar{M} and \bar{B}.
Definition of M : If $\mathrm{B}=1 \mathrm{~T}$ and $\theta=90^{\circ}$ then $\tau=M$
Moment of the magnet is numerically equal to the torque acting on the magnet when it is placed at right angles to a uniform magnetic field of unit induction.

Unit of M: $\quad \mathrm{N}-\mathrm{m} /$ tesla
vi)

Very Short Answer Questions:

1. When is the couple acting on a bar magnet in a uniform magnetic field (i) maximum, (ii) minimum ?

Ans :i) When the bar magnet is at right angles to the direction of uniform magnetic field $\left(\theta=90^{\circ}\right)$, the torque on the magnet is maximum $\left(\tau_{\max }=M B\right)$
(ii) When the magnet is parallel to the direction of uniform magnetic field $\left(\theta=0^{0}\right)$, the torque on the magnet is minimum $\left(\tau_{\min }=0\right)$.

SOLVED PROBLEMS

1. A bar magnet of length 10 cm and pole strength 2 Am is making an angle 60° with a uniform magnetic field of induction 50 Tesla. Find the couple acting on it.

Sol: Couple acting on the magnet, $C=M B \operatorname{Sin} \theta$
Magnetic moment $(M)=21 \mathrm{~m}=0.1 \times 2=0.2 \mathrm{Am}^{2} ; \mathrm{B}=50 \mathrm{~T} ; \theta=60^{\circ}$

$$
C=M B \sin \theta=0.2 \times 50 \times \sin 60^{\circ}=10 \times \frac{\sqrt{3}}{2}=8.366 \mathrm{Nm}
$$

2. A magnetic needle is acted upon by two fields of induction B_{1} and B_{2} respectively having an angle of 60° between them. The magnetic needle makes an angle of 15^{0} with the direction of B_{1} and comes to equilibrium. If the magnitude of B_{1} is $1.2 \times 10^{-2} \mathrm{~T}$, find the value of B_{2}.

Sol: Let ' M ' be the magnetic moment of the needle
Angle between the two fields $=60^{\circ}$
The angle between the needle and $B_{1}=\theta_{1}=15^{\circ}$
Angle between the needle and $B_{2}=45^{\circ}$
Also, $\quad B_{1}=1.2 \times 10^{-2} T$.
At equilibrium, $\mathrm{M} B_{2} \sin \theta_{2}=M B_{1} \sin \theta_{1}$

$$
\therefore B_{2}=\frac{B_{1} \sin \theta_{1}}{\sin \theta_{2}}=\frac{1.2 \times 10^{-2} \sin 15^{0}}{\sin 45^{0}}=4.392 \times 10^{-3} T
$$

Unsolved Problem

1. If the maximum couple acting on a magnet in a field of induction 0.2 Tesla is 10 Nm , what is its magnetic moment?

Sol : $\quad \mathrm{B}=0.2$ Tesla, $\tau=10 \mathrm{Nm}$
Maximum torque $(\tau)=M B \quad\left(\because \theta=90^{\circ}\right)$

$$
10=\mathrm{M}(0.2)
$$

\therefore Magnetic moment $(M)=\frac{10}{0.2}=50 \mathrm{Am}^{2}$
2. The maximum torque acting on the magnet of length $2 \times 10^{-1} \mathrm{~m}$ in a uniform magnetic field having induction 2×10^{-1} Tesla is 10 Nm . Calculate its pole strength.?

Sol: \quad Maximum torque $=\mathrm{MB}=10 \mathrm{~N}-\mathrm{m}$
Length of the magnet $2 l=2 \times 10^{-1} \mathrm{~m}$.
Magnetic induction field strength $B=2 \times 10^{-1}$ Tesla
For maximum torque, $\theta=90^{\circ}$
Pole strength $m=\frac{\tau}{2 l B \sin \theta}=\frac{10}{2 \times 10^{-1} \times 2 \times 10^{-1}}=250 \mathrm{Am}$
3. Calculate the moment of couple required to keep a bar magnet of magnetic moment $2 \times 10^{2} \mathrm{Am}^{2}$ in a uniform field of induction 0.36 T at an angle 30° with the direction of uniform field?

Sol: $\quad M=2 \times 10^{2} A-m^{2} ; ~ B=0.36 \mathrm{~T} ; \theta=30^{\circ}$
Moment of couple $(\tau)=M B \sin \theta$
$\tau=2 \times 10^{2} \times 0.36 \times \sin 30^{\circ}=36 \mathrm{Nm}$.
4. When a bar magnetic is placed at 90° to uniform magnetic field, it is acted upon by a couple which is maximum. For the couple to be half of the maximum value, at what angle should the magnet be inclined to the magnetic field (B)?

Sol: case 1: From $\theta_{1}=90^{\circ}$
$\tau=M B \operatorname{Sin} \theta$
$\tau=\tau_{\text {max }} \operatorname{Sin} \theta_{1}=1 \quad\left(\because \theta_{1}=90^{\circ}\right)$

$$
\Rightarrow \tau_{\max }=M B
$$

$\underline{\text { Case (2) }}: \tau=\frac{1}{2} \tau_{\text {max }}$

$$
\Rightarrow M B \operatorname{Sin} \theta_{2}=\frac{1}{2} \tau_{\max }=\frac{1}{2}(M B) \quad \Rightarrow \operatorname{Sin} \theta_{2}=\frac{1}{2}=\operatorname{Sin} 30^{\circ} \quad \Rightarrow \theta_{2}=30^{\circ}
$$

ASSESS YOURSELF:

1. Two magnets of magnetic moments M_{1} and M_{2} are joined are joined at their centers to form a cross (perpendicular to each other). The combination is suspended in a uniform magnetic field directed vertically upwards. It stands in equilibrium when either of them makes an angle of 45° with the vertical field. What is the ratio of their magnetic moments?

Ans: $\quad M_{1}: M_{2}=1: 1$

