JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

I Year B.Tech. ECE

\mathbf{T}	P	C
0	3	4

COMPUTER PROGRAMMING LAB

Objectives:

- To make the student learn a programming language.
- To teach the student to write programs in C solve the problems
- To Introduce the student to simple linear and non linear data structures such as lists, stacks, queues, trees and graphs.

Recommended Systems/Software Requirements:

- Intel based desktop PC
- ANSI C Compiler with Supporting Editors

Week I.

a) Write a C program to find the sum of individual digits of a positive integer.
b) A Fibonacci Sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
c) Write a C program to generate all the prime numbers between 1 and n , where n is a value supplied by the user.

Week 2.
a) Write a C program to calculate the following Sum:

$$
\text { Sum }=1-x^{2} / 2!+x^{4} / 4!-x^{6} / 6!+x^{8} / 8!-x^{10} / 10!
$$

b) Write a C program toe find the roots of a quadratic equation.

Week 3

a) Write C programs that use both recursive and non-recursive functions
i) To find the factorial of a given integer.
ii) To find the GCD (greatest common divisor) of two given integers.
iii) To solve Towers of Hanoi problem.

Week 4

a) The total distance travelled by vehicle in 't' seconds is given by distance $=u t+1 / 2 a t^{2}$ where ' u ' and ' a ' are the initial velocity ($\mathrm{m} / \mathrm{sec}$.) and acceleration $\left(\mathrm{m} / \mathrm{sec}^{2}\right)$. Write C program to find the distance travelled at regular intervals of time given the values of ' u ' and ' a '. The program should provide the flexibility to the user to select his own time intervals and repeat the calculations for different values of ' u ' and ' a '.
b) Write a C program, which takes two integer operands and one operator form the user, performs the operation and then prints the result. (Consider the operators $+,-,{ }^{*}, l, \%$ and use Switch Statement)

Week 5

a) Write a C program to find both the larges and smallest number in a list of integers
b) Write a C program that uses functions to perform the following:
i) Addition of Two Matrices
ii) Multiplication of Two Matrices

Week 6

a) Write a C program that uses functions to perform the following operations:
i) To insert a sub-string in to given main string from a given position.
ii) To delete n Characters from a given position in a given string.
b) Write a C program to determine if the given string is a palindrome or not

Week 7

a) Write a C program that displays the position or index in the string S where the string T begins, or -1 if S doesn't contain T .
b) Write a C program to count the lines, words and characters in a given text.

Week 8

a) Write a C program to generate Pascal's triangle.
b) Write a C program to construct a pyramid of numbers.

Week 9

Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression:
$1+x+x^{2}+x^{3}+$ \qquad $+x^{n}$
For example: if n is 3 and x is 5 , then the program computes $1+5+25+125$.
Print x, n, the sum
Perform error checking. For example, the formula does not make sense for negative exponents - if n is less than 0 . Have your program print an error message if $n<0$, then go back and read in the next pair of numbers of without computing the sum. Are any values of x also illegal ? If so, test for them too.

Week 10

a) 2's complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1 . Thus 2 's complement of 11100 is 00100 . Write a C program to find the 2 's complement of a binary number.
b) Write a C program to convert a Roman numeral to its decimal equivalent.

Week 11

Write a C program that uses functions to perform the following operations:
i) Reading a complex number
ii) Writing a complex number
iii) Addition of two complex numbers
iv) Multiplication of two complex numbers
(Note: represent complex number using a structure.)
Week 12
a) Write a C program which copies one file to another.
b) Write a C program to reverse the first n characters in a file.
(Note: The file name and n are specified on the command line.)

Week 13

Write a C program that uses functions to perform the following operations on singly linked list.:
i) Creation ii) Insertion
iii) Deletion
iv) Traversal

Week 14

Write a C program that uses functions to perform the following operations on doubly linked list.: i) Creation ii) Insertion iii) Deletion iv) Traversal in both ways

Week 15

Write C programs that implement stack (its operations) using
i) Arrays ii) Pointers

Week 16

Write C programs that implement Queue (its operations) using
i) Arrays ii) Pointers

Week 17
Write a C program that uses Stack operations to perform the following:
i) Converting infix expression into postfix expression
ii) Evaluating the postfix expression

Week 18

Write a C program that uses functions to perform the following:
i) Creating a Binary Tree of integers
ii) Traversing the above binary tree in preorder, inorder and postorder.

Week 19

Write C programs that use both recursive and non recursive functions to perform the following searching operations for a Key value in a given list of integers :
i) Linear search
ii) Binary search

Write C programs that implement the following sorting methods to sort a given list of integers in ascending order:
i) Bubble sort $\begin{array}{ll}\text { ii) Quick sort }\end{array}$

Week 21
Write C programs that implement the following sorting methods to sort a given list of integers in ascending order:
i) Insertion sort ii) Merge sort

Week 22
Write C programs to implement the Lagrange interpolation and Newton- Gregory forward interpolation.
Week 23
Write C programs to implement the linear regression and polynomial regression algorithms.
Week 24
Write C programs to implement Trapezoidal and Simpson methods.

Text Books

1. C programming and Data Structures, P. Padmanabham, Third Edition, BS Publications
2. Data Structures: A pseudo code approach with C, second edition R.F. Gilberg and B.A. Forouzan
3. Programming in C, P.Dey \& M. Ghosh, Oxford Univ.Press.
4. C and Data Structures, E Balaguruswamy, TMH publications.
