CHAPTER 3

PARABOLA

TOPICS:
1.Conic Sections
2. Standard Form Of A Parabola, Nature Of The Curve And Properties
3.Tangents And Normals
4.Chord And Chord Of Contact
5.Parametric Equation
6.Pole And Polar
7.Conjugate Points And Conjugate Lines.

PARABOLA

CONIC

The locus of a point which moves in a plane so that its distance from a fixed point bears a constant ratio to its distance from a fixed straight line is called a conic section or conic. The fixed point is called focus, the fixed straight line is called directrix and the constant ratio 'e' is called eccentricity of the conic.
i) If $\mathrm{e}=1$, then the conic is called a parabola.
ii) If $\mathrm{e}<1$, then the conic is called an ellipse.
iii) If $\mathrm{e}>1$, then the conic is called a hyperbola.

Note.

The equation of a conic is of the form $\mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$.

DIRECTRIX OF THE CONIC

A line $\mathrm{L}=0$ passing through the focus of a conic is said to be the principal axis of the conic if it is perpendicular to the directrix of the conic.

VERTICES

The points of intersection of a conic and its principal axis are called vertices of the conic.

CENTRE

The midpoint o the line segment joining the vertices of a conic is called centre of the conic.

Note 1 : If a conic has only one vertex then its centre coincides with the vertex.

Note 2 : If a conic has two vertices then its centre does not coincide either of the vertices. In this case the conic is called a central conic.

STANDARD FORM

A conic is said to be in the standard form if the principal axis of the conic is x -axis and the centre of the conic is the origin.

EQUATION OF A PARABOLA IN STANDARD FORM.

The equation of a parabola in the standard form is $y^{2}=4 a x$.
Proof
Let S be the focus and $L=0$ be the directrix of the parabola.
Let P be a point on the parabola.
Let M, Z be the projections of P, S on the directrix $\mathrm{L}=0$ respectively.
Let N be the projection of P on SZ .

Let A be the midpoint of SZ.
Therefore, $\mathrm{SA}=\mathrm{AZ}, \Rightarrow \mathrm{A}$ lies on the parabola. Let $\mathrm{AS}=\mathrm{a}$.
Let AS, the principal axis of the parabola as x -axis and Ay perpendicular to SZ as y -axis.
Then $S=(a, 0)$ and the parabola is in the standard form.
Let $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$.
Now $\mathrm{PM}=\mathrm{NZ}=\mathrm{NA}+\mathrm{AZ}=\mathrm{x}_{1}+\mathrm{a}$
P lies on the parabola $\Rightarrow \frac{\mathrm{PS}}{\mathrm{PM}}=1 \Rightarrow \mathrm{PS}=\mathrm{PM}$

$$
\begin{aligned}
& \Rightarrow \sqrt{\left(x_{1}-a\right)^{2}+\left(y_{1}-0\right)^{2}}=x_{1}+a \\
& \Rightarrow\left(x_{1}-a\right)^{2}+y_{1}^{2}=\left(x_{1}+a\right)^{2} \\
& \Rightarrow y_{1}^{2}=\left(x_{1}+a\right)^{2}-\left(x_{1}-a\right)^{2} \Rightarrow y_{1}^{2}=4 a x_{1}
\end{aligned}
$$

The locus of P is $y^{2}=4 a x$.
\therefore The equation to the parabola is $\mathrm{y}^{2}=4 \mathrm{ax}$.

NATURE OF THE CURVE $\mathbf{y}^{\mathbf{2}}=\mathbf{4 a x}$.

i) The curve is symmetric with respect to the x-axis.
\therefore The principal axis (x-axis) is an axis of the parabola.
ii) $y=0 \Rightarrow x=0$. Thus the curve meets x-axis at only one point $(0,0)$.

Hence the parabola has only one vertex.
iii) If $x<0$ then there exists no $y \in R$. Thus the parabola does not lie in the second and third quadrants.
iv) If $x>0$ then $y^{2}>0$ and hence y has two real values (positive and negative). Thus the parabola lies in the first and fourth quadrants.
v) $x=0 \Rightarrow y^{2}=0 \Rightarrow y=0,0$. Thus y-axis meets the parabola in two coincident points and hence y-axis touches the parabola at $(0,0)$.
vi) as $x \rightarrow \infty \Rightarrow y^{2} \rightarrow \infty \Rightarrow y \rightarrow \pm \infty$

Thus the curve is not bounded (closed) on the right side of the y-axis.

DOUBLE ORDINATE

A chord passing through a point P on the parabola and perpendicular to the principal axis of the parabola is called the double ordinate of the point P.

FOCAL CHORD

A chord of the parabola passing through the focus is called a focal chord.

LATUS RECTUM

A focal chord of a parabola perpendicular to the principal axis of the parabola is called latus rectum. If the latus rectum meets the parabola in L and L^{\prime}, then LL^{\prime} is called length of the latus rectum.

THEOREM

The length of the latus rectum of the parabola $y^{2}=4 a x$ is $4 a$.

Proof :

Let L^{\prime} be the length of the latus rectum of the parabola $y^{2}=4 a x$.
Let $S L=1$, then $L=(a, 1)$.
Since L is a point on the parabola $y^{2}=4 a x$, therefore $1^{2}=4 a(a)$
$\Rightarrow 1^{2}=4 \mathrm{a}^{2} \Rightarrow \mathrm{l}=2 \mathrm{a} \Rightarrow \mathrm{SL}=2 \mathrm{a}$

$\therefore L^{\prime}=2 S L=4 a$.

FOCAL DISTANCE

If P is a point on the parabola with focus S , then SP is called focal distance of P .
THEOREM
The focal distance of $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ on the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ is $\mathbf{x}_{\mathbf{1}}+\mathbf{a}$.

SL.NO	CONTENT	I	II	III	IV
	EQUATION	$y^{2}=4 a x$	$y^{2}=-4 a x$	$x^{2}=4 a y$	

4.	EQUATION OF AXIS	$\mathrm{Y}=0$	$\mathrm{Y}=0$	$\mathrm{X}=0$	$\mathrm{X}=0$
5.	EQUATION OF DIRETRIX	$\mathrm{x}=-\mathrm{a}$	$\mathrm{x}=\mathrm{a}$	$\mathrm{y}=-\mathrm{a}$	$\mathrm{y}=\mathrm{a}$
6.	TANGENT AT VERTEX	$\mathrm{X}=0$	$\mathrm{X}=0$	$\mathrm{Y}=\mathrm{O}$	$\mathrm{Y}=0$
7.	EQUATION OF LATUSRECTUM	$\mathrm{X}=\mathrm{a}$	$\mathrm{X}=-\mathrm{a}$	$\mathrm{Y}=\mathrm{a}$	$\mathrm{Y}=-\mathrm{a}$
8.	LENGTH OF LATUSRECTUM	4 a	4 a	4 a	4 a
9.	DISTANCE FROM FOCUS TO DIRECTRIX	2 a	2 a	2 a	2 a

1. For the parabola $(y-\beta)^{2}=4 a(x-\alpha)$

1) vertex $A=\left(\begin{array}{lll}\alpha, \beta & \text { 2) FocusS }(a+\alpha, \beta) & 3\end{array}\right)$ directrix is $\left.L=x-\alpha=-a \quad 4\right)$ latusrectum $=|4 a| 5$. axis of the parabola $y=\beta$
2. For the parabola $(y-\beta)^{2}=-4 a(x-\alpha)$

1) vertex $A=\left(\begin{array}{lll}\alpha, \beta) & \text { 2) FocusS }(\alpha-a, \beta) & 3\end{array}\right)$ directrix isL $\left.=x-\alpha=a \quad 4\right)$ latusrectum $=|4 a|$ 5) axis of the parabola $\mathrm{y}=\beta$.
3. For the parabola $(x-\alpha)^{2}=4 a(y-\beta)$

1) vertex $A=(\alpha, \beta)$
2) FocusS $(\alpha, a+\beta)$
3) directrix is $L=y-\beta=-a$
4) latusrectum $=|4 a|$
5) axis of the parabola is $x=\alpha$

4. For the parabola $(x-\alpha)^{2}=-4 a(y-\beta)$

1) vertex $A=(\alpha, \beta)$
2) FocusS ($\alpha, \beta-a)$
3) directrix is $L=y-\beta=a$
4) latusrectum $=|4 a|$
5) axis of the parabola is $x=\alpha$

Notation : We use the following notation in this chapter

$$
S \equiv y^{2}-4 a x
$$

$$
S_{1} \equiv y_{1}-2 a\left(x+x_{1}\right)
$$

$$
\begin{aligned}
& \mathrm{S}_{11}=\mathrm{S}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \equiv \mathrm{y}_{1}{ }^{2}-4 \mathrm{ax}_{1} \\
& \mathrm{~S}_{12} \equiv \mathrm{y}_{1} \mathrm{y}_{2}-2 \mathrm{a}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)
\end{aligned}
$$

Note :

Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be a point and $\mathrm{S} \equiv \mathrm{y}^{2}-4 \mathrm{ax}=0$ be a parabola. Then
i) P lies on the parabola $\Leftrightarrow S_{11}=0$
ii) P lies inside the parabola $\Leftrightarrow \mathrm{S}_{11}<0$
iii) P lies outside the parabola $\Leftrightarrow S_{11}>0$.

EXERCISE 3(a)

1. Find the vertex and focus of $4 y^{2}+12 x-20 y+67=0$.

Sol. Given parábola $4 y^{2}+12 x-20 y+67=0$
$4 y^{2}-20 y=-12 x-67$
$y^{2}-5 y=-3 x-\frac{67}{4}$
$\Rightarrow\left(y-\frac{5}{2}\right)^{2}-\frac{25}{4}=-3 x-\frac{67}{4}$
$\Rightarrow\left(y-\frac{5}{2}\right)^{2}=-3 x-\frac{42}{4}=-3\left(x+\frac{7}{2}\right)$
$\Rightarrow\left(y-\frac{5}{2}\right)^{2}=-3\left[x-\left(-\frac{7}{2}\right)\right]$
$\therefore \mathrm{h}=-\frac{7}{2}, \mathrm{k}=\frac{5}{2}, \mathrm{a}=-\frac{3}{4}$
Vertex A is $\left(-\frac{7}{2}, \frac{5}{2}\right)$
Focus is $\mathrm{s}(\mathrm{h}+\mathrm{a}, \mathrm{k})=\left(-\frac{7}{2}-\frac{3}{4}, \frac{5}{2}\right)=\left(\frac{-17}{4}, \frac{5}{2}\right)$
2. Find the vertex and focus of $x^{2}-6 x-6 y+6=0$.

Sol. Given parabola is $x^{2}-6 x-6 y+6=0$
$\Rightarrow x^{2}-6 x=6 y-6$
$\Rightarrow(x-3)^{2}-9=6 y-6$
$\Rightarrow(\mathrm{x}-3)^{2}=6 \mathrm{y}+3$
$\Rightarrow(x-3)^{2}=6\left(y+\frac{1}{2}\right)=6\left[y-\left(\frac{-1}{2}\right)\right]$
$\therefore \mathrm{h}=3, \mathrm{k}=\frac{-1}{2}, \mathrm{a}=\frac{6}{4}=\frac{3}{2}$
Vertex $=(h, k)=\left(3, \frac{-1}{2}\right)$
Focus $=(\mathrm{h}, \mathrm{k}+\mathrm{a})=\left(3,-\frac{1}{2}-\frac{1}{2}\right)=(3,-1)$
3. Find the equations of axis and directrix of the parabola $y^{2}+6 y-2 x+5=0$.

Sol. Given parabola is $y^{2}+6 y=2 x-5$
$\Rightarrow[y-(-3)]^{2}-9=2 x-5$
$\Rightarrow[\mathrm{y}-(-3)]^{2}=2 \mathrm{x}-5+9$
$\Rightarrow[y-(-3)]^{2}=2 x+4$
$\Rightarrow[y-(-3)]^{2}=2[x-(-2)]$
Comparing with $(\mathrm{y}-\mathrm{k})^{2}=4 \mathrm{a}(\mathrm{x}-\mathrm{h})$ we get,
$(\mathrm{h}, \mathrm{k})=(-2,-3), \mathrm{a}=\frac{1}{2}$
Equation of the axis $\mathrm{y}-\mathrm{k}=0$ i.e. $\mathrm{y}+3=0$
Equation of the directrix $x-h+a=0$
i.e. $x-(-2)+\frac{1}{2}=0$
$2 x+5=0$.
4. Find the equation of axis and directrix of the parabola $4 x^{2}+12 x-20 y+67=0$.

Sol. Given parabola $4 x^{2}+12 x-20 y+67=0$

$$
\begin{aligned}
& \Rightarrow 4 x^{2}+12 x=20 y-67 \\
& \Rightarrow x^{2}+3 x=5 y-\frac{67}{4} \\
& \Rightarrow\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}=5 y-\frac{67}{4} \\
& \Rightarrow\left(x+\frac{3}{2}\right)^{2}=5 y-\frac{58}{4}=5 y-\frac{29}{2} \\
& \Rightarrow\left[x-\left(-\frac{3}{2}\right)\right]^{2}=5\left[y-\frac{29}{10}\right]
\end{aligned}
$$

Comparing with $(\mathrm{x}-\mathrm{h})^{2}=4 \mathrm{a}(\mathrm{y}-\mathrm{k})$
$(\mathrm{h}, \mathrm{k})=\left(-\frac{3}{2}, \frac{29}{10}\right), \mathrm{a}=\frac{5}{4}$
Equation of the axis $\mathrm{x}-\mathrm{h}=0$
i.e. $x+\frac{3}{2}=0 \Rightarrow 2 x+3=0$

Equation of the directrix, $\mathrm{y}-\mathrm{k}+\mathrm{a}=0$

$$
y-\frac{29}{10}+\frac{5}{4}=0 \Rightarrow 20 y-33=0
$$

5. Find the equation of the parabola whose focus is $s(1,-7)$ and vertex is $A(1,-2)$.

Sol.
Focus $\mathrm{s}=(1,-7)$, vertex $\mathrm{A}(1,-2)$
$h=1, k=-2, a=-2+7=5$
since x coordinates of S and A are equal, axis of the parabola is parallel to y-axis.
And the y coordinate of S is less than that of A, therefore the parabola is a down ward parabola.
Let equation of the parabola be

$$
\begin{aligned}
& (x-h)^{2}=-4 a(y-k) \\
& \Rightarrow(x-1)^{2}=-20(y+2) \\
& \Rightarrow x^{2}-2 x+1=-20 y-40 \\
& \Rightarrow x^{2}-2 x+20 y+41=0
\end{aligned}
$$

6. Find the equation of the parabola whose focus is $S(3,5)$ and vertex is $A(1,3)$.

Sol.
Focus $S(3,5)$ and vertex $A(1,3)^{\prime}$
let $Z(x, y)$ be the projection of S on directrix. The A is the mid point of $S Z$.
$\Rightarrow(1,3)=\left(\frac{3+x}{2}, \frac{5+y}{2}\right) \Rightarrow x=-1, y=1$
$\mathrm{Z}=(-1,1)$
Slope of directrix $=-1 /\left(\right.$ slope of SA) $=\frac{-1}{\left(\frac{5-3}{3-1}\right)}=-1$
Equation of directrix is $y-1=-1(x+1) \quad$ i.e., $x+y=0---(1)$ let $P(x, y)$ be any point on the parabola. Then $\mathrm{SP}=\mathrm{PM} \Rightarrow \mathrm{SP}^{2}=\mathrm{PM}^{2}$ where PM is the perpendicular from P the directrix.
$\Rightarrow(x-3)^{2}+(y-5)^{2}=\frac{(x+y)^{2}}{1+1}$
$\Rightarrow 2\left(x^{2}-6 x+9+y^{2}-10 y+25\right)=(x+y)^{2}$
$\Rightarrow 2 x^{2}+2 \mathrm{y}^{2}-12 \mathrm{x}-20 \mathrm{y}+68=\mathrm{x}^{2}+2 \mathrm{xy}+\mathrm{y}^{2}$
i.e. $x^{2}-2 x y+y^{2}-12 x-20 y+68=0$.
7. Find the equation of the parabola whose latus rectum is the line segment of joining the points $(-3,2)$ and $(-3,1)$.

Sol. Ends of the latus rectum are $L(-3,2)$ and $L^{\prime}(-3,1)$.
Length of the latusrectum is $L^{\prime}=\sqrt{(-3+3)^{2}+(2-1)^{2}}=\sqrt{0+1}=1 \quad(=4 \mathrm{a})$
$\Rightarrow 4|\mathrm{a}|=1 \Rightarrow|\mathrm{a}|=\frac{1}{4} \Rightarrow \mathrm{a}= \pm \frac{1}{4}$
S is the midpoint of $\mathrm{LL}^{\prime} \Rightarrow \mathrm{S}=\left(-3, \frac{3}{2}\right)$
Case I: $\mathrm{a}=-1 / 4$

$$
\Rightarrow \mathrm{A}=\left[-3+\frac{1}{4}, \frac{3}{2}\right]
$$

Equation of the parabola is $\quad\left(y-\frac{3}{2}\right)^{2}=-\left(x+3-\frac{1}{4}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{(2 y-3)^{2}}{4}=\frac{-(4 x+12-1)}{4} \\
& \Rightarrow(2 y-3)^{2}=-(4 x+11)
\end{aligned}
$$

Case II : $\mathrm{a}=1 / 4$

$\Rightarrow \mathrm{A}=\left[-3-\frac{1}{4}, \frac{3}{2}\right]$
Equation of the parabola is $\quad\left(y-\frac{3}{2}\right)^{2}=\left(x+3+\frac{1}{4}\right)$

$$
\Rightarrow \frac{(2 y-3)^{2}}{4}=\frac{(4 x+12-1)}{4} \Rightarrow(2 y-3)^{2}=4 x+13
$$

8. Find the position (interior or exterior or on) of the following points with respect to the parabola $\mathbf{y}^{2}=6 x$. (i) $(6,-6)$, (ii) $(0,1)$, (iii) $(2,3)$
Sol. Equation of the parabola is $y^{2}=6 x$

$$
\Rightarrow S \equiv y^{2}-6 x
$$

i) $S_{11}=(-6)^{2}-6.6=36-36=0$
$\therefore(6,-6)$ lies on the parabola.
ii) $(0,1)$
$S_{11}=1^{2}-6.0=1>0$
$\therefore(0,1)$ lies outside the parabola.
iii) $(2,3)$
$S_{11}=3^{2}-6.2=9-12=-3<0$
$\therefore(2,3)$ lies inside the parabola.
9. Find the coordinates of the point on the parabola $y^{2}=8 x$ whose focal distance is 10 .

Sol. Equation of the parabola is $y^{2}=8 x$ $4 a=8 \Rightarrow a=2$
$\Rightarrow S=(2,0)$

let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be a point on the parabola
Given $\mathrm{SP}=10$
$\Rightarrow|x+a|=10 \Rightarrow x+2= \pm 10$
$\Rightarrow x=8$ or -12
Case I: $\mathrm{x}=8$
$y^{2}=8 x=8 \times 8=64$
$y= \pm 8$
Coordinates of the required points are $(8,8)$ and $(8,-8)$
Case II : $\mathrm{x}=-12$
$y^{2}=8 \times-12=-96<0$
y is not real.
10. If $(1 / 2,2)$ is one extremity of a focal chord of the parabola $y^{2}=8 x$. Find the coordinates of the other extremity.
Sol. Given parabola $y^{2}=8 x$
focus $S=(2,0)$
One end of the focal chord is $\mathrm{P}\left(\frac{1}{2}, 2\right)$,

Let $\mathrm{Q}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be the other end of the focal chord.
Q is a point on the parabola, $y_{1}{ }^{2}=8 x_{1} \Rightarrow x_{1}=\frac{y_{1}^{2}}{8}$
$\Rightarrow \mathrm{Q}=\left(\frac{\mathrm{y}_{1}^{2}}{8}, \mathrm{y}_{1}\right)$

Slope of SP $=\frac{0-2}{2-\frac{1}{2}}=\frac{-4}{3}$
Slope of SQ $=\frac{y_{1}-0}{\frac{y_{1}^{2}}{8}-2}=\frac{8 y_{1}}{y_{1}^{2}-16}=\frac{-4}{3}$
PSQ is a focal chord \Rightarrow the points $\mathrm{P}, \mathrm{S}, \mathrm{Q}$ are collinear.
Therefore, Slope of SP = Slope of SQ
$24 \mathrm{y}_{1}=-4 \mathrm{y}_{1}^{2}+64 \Rightarrow 4 \mathrm{y}_{1}^{2}+24 \mathrm{y}_{1}-64=0$
$\Rightarrow \mathrm{y}_{1}^{2}+6 \mathrm{y}_{1}-16=0 \Rightarrow\left(\mathrm{y}_{1}+8\right)\left(\mathrm{y}_{1}-2\right)=0$
$y_{1}=2,-8 ; x_{1}=\frac{1}{2}, 8$
Therefore $(8,-8)$ other extremity.
(If $\mathrm{x}_{1}=\frac{1}{2}$ then $\mathrm{y}_{1}=2$ which is the given point .)
II.

1. Find the locus of the points of trisection of double ordinate of a parabola $y^{2}=4 a x(a>0)$. Sol.

Given parabola is $y^{2}=4 a x$

let $\mathrm{P}(\mathrm{p}, \mathrm{q})$ and $\mathrm{Q}(\mathrm{p},-\mathrm{q})$ be the ends of the double ordinate.

Let A, B be the points of trisection of the double ordinate.

A divides PQ in the ratio $1: 2$.
$\Rightarrow \mathrm{A}=\left(\mathrm{p}, \frac{-\mathrm{q}+2 \mathrm{q}}{3}\right)=\left(\mathrm{p}, \frac{\mathrm{q}}{3}\right)$
Let $\left(x_{1}, y_{1}\right)$ be the coordinates of the one of the points of trisection, say A Then $\mathrm{p}=\mathrm{x}_{1}$ and
$\mathrm{y}_{1}=\frac{\mathrm{q}}{3} \Rightarrow \mathrm{q}=3 \mathrm{y}_{1}$
But $P(p, q)=\left(x_{1}, 3 y_{1}\right)$ is a point on the parabola.
$\Rightarrow 4 \mathrm{ax}_{1}=9 \mathrm{y}_{1}^{2}$
Locus of $\left(x_{1}, y_{1}\right)$ is $9 y^{2}=4 a x$.
2. Find the equation of the parabola whose vertex and focus are on the positive x-axis at a distance of a and a^{\prime} from origin respectively.
Sol. Vertex $A(a, 0)$ and focus $S\left(a^{\prime}, 0\right)$
AS $=\mathrm{a}^{\prime}-\mathrm{a}$

latusrectum $=4\left(a^{\prime}-a\right)$
Equation of the parabola is $y^{2}=4\left(a^{\prime}-a\right)(x-a)$
3. If L and L^{\prime} are the ends of the latus rectum of the parabola $x^{2}=6 y$. Find the equations of $O L$ and $O L^{\prime}$ where O is the origin. Also find the angle between them.
Sol. GIVEN parabola is $\mathrm{x}^{2}=6 \mathrm{y}$
Curve is symmetric about Y-axis

$4 \mathrm{a}=6 \Rightarrow \mathrm{a}=\frac{3}{2}$
$\mathrm{L}=(2 \mathrm{a}, \mathrm{a})=\left(3, \frac{3}{2}\right)$ and $\mathrm{L}^{\prime}=(-2 \mathrm{a}, \mathrm{a})=\left(-3, \frac{3}{2}\right)$
Now equation of OL is $x=2 y$
And equation of OL^{\prime} is $x=-2 y$
Let θ be the angle between the lines, then
$\tan \theta=\left|\frac{\frac{1}{2}+\frac{1}{2}}{1-\frac{1}{4}}\right|=\frac{4}{3} \Rightarrow \theta=\operatorname{Tan}^{-1}\left(\frac{4}{3}\right)$
4. Find the equation of the parabola whose axis is parallel to x-axis and which passes through these points. $\mathrm{A}(-2,1), \mathrm{B}(1,2), \mathrm{C}(-1,3)$
Sol.
Given that axis of the parabola is parallel to X -axis,
Let the equation of the parabola be $x=a y^{2}+b y+c$
It is Passing through $(-2,1),(1,2),(-1,3)$
$(-2,1) \Rightarrow-2=\mathrm{a}+\mathrm{b}+\mathrm{c} \ldots$ (i)
$(1,2) \Rightarrow 1=4 a+2 b+c$
$(-1,3) \Rightarrow-1=9 a+3 b+c$
(ii) - (iii) $2=-5 a-b$
(ii) - (i) $\frac{3=3 \mathrm{a}+\mathrm{b}}{5=-2 \mathrm{a}}$
$\mathrm{a}=-\frac{5}{2}, \mathrm{~b}=\frac{21}{2}, \mathrm{c}=-10$
$x=-\frac{5}{2} y^{2}+\frac{21}{2} y-10$
$5 y^{2}+2 x-21 y+20=0$
5. Find the equation of the parabola whose axis is parallel to Y-axis and which passes through the points $(4,5),(-2,11),(-4,21)$.
Sol.
Given that axis of the parabola is parallel to X -axis,
Let the equation of the parabola be $y=a x^{2}+b x+c$
It is Passing through $(4,5),(-2,11),(-4,21)$

$$
\begin{align*}
& \quad(4,5) \Rightarrow 5=16 \mathrm{a}+4 \mathrm{~b}+\mathrm{c} \tag{i}\\
& (-2,11) \Rightarrow 11=4 \mathrm{a}-2 \mathrm{~b}+\mathrm{c} \tag{ii}\\
& (-4,21) \Rightarrow 21=16 \mathrm{a}-4 \mathrm{~b}+\mathrm{c} \tag{iii}\\
& \text { (ii) - (i) we get : } 6=-12-6 \mathrm{~b} \\
& \text { (iii) - (ii) }: 10=12 \mathrm{a}-2 \mathrm{~b}
\end{align*}
$$

Solving these equations ,
$\mathrm{b}=-2, \mathrm{a}=1 / 2, \mathrm{c}=5$

$$
\begin{gathered}
y=\frac{1}{2} x^{2}-2 x+5 \\
x^{2}-2 y-4 x+10=0
\end{gathered}
$$

III.

1. Find the equation of the parabola whose focus is $(-2,3)$ and directrix is the line $2 x+3 y-4=0$.

Also find the length of the latus rectum and the equation of the axis of the parabola.
Sol.

Focus $S(-2,3)$
Equation of the directrix is $2 x+3 y-4=0$.
Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be any point on the parabola.
$S P^{2}=\left(x_{1}+2\right)^{2}+\left(y_{1}-3\right)^{2}$
Let PM be the perpendicular from P to the directrix.

From Def. of parabola $\mathrm{SP}=\mathrm{PM} \Rightarrow \mathrm{SP}^{2}=\mathrm{PM}^{2}$
$\left(x_{1}+2\right)^{2}+\left(y_{1}-3\right)^{2}=\frac{\left(2 x_{1}+3 y_{1}-4\right)^{2}}{13}$
$13\left(x_{1}^{2}+4 x_{1}+4+y_{1}^{2}-6 y_{1}+9\right)=\left(2 x_{1}+3 y_{1}-4\right)^{2}$
$9 \mathrm{x}_{1}^{2}-12 \mathrm{x}_{1} \mathrm{y}_{1}+4 \mathrm{y}_{1}^{2}+68 \mathrm{x}_{1}-54 \mathrm{y}_{1}+153=0$
Locus of $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is
$9 x^{2}-12 x y+4 y^{2}+68 x-54 y+153=0$
Length of the latus rectum $=4 a$
$2 \mathrm{a}=$ Perpendicular distance from S on directrix $=\frac{|2(-2)+3 \cdot 3-4|}{\sqrt{4+9}}=\frac{1}{\sqrt{13}}$
Length of the latus rectum $=4 a=\frac{2}{\sqrt{3}}$
The axis is perpendicular to the directrix
Equation of the directrix can be taken as

$$
3 x-2 y+k=0
$$

This line passes through $S(-2,3)$

$$
-6-6+k=0 \Rightarrow k=12
$$

Equation of the axis is : $3 \mathrm{x}-2 \mathrm{y}+12=0$
2. Prove that the area of the triangle inscribed in the parabola $y^{2}=4 a x$ is
$\frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|$ sq.units where y_{1}, y_{2}, y_{3} are the ordinates of its vertices.
Sol.
Given parabola is $y^{2}=4 a x$
let $\mathrm{P}\left(\mathrm{at}_{1}^{2}, 2 \mathrm{at}_{1}\right), \mathrm{Q}\left(\mathrm{at}_{2}^{2}, 2 \mathrm{at}_{2}\right), \mathrm{R}\left(\mathrm{at}_{3}^{2}, 2 \mathrm{at}_{3}\right)$ be the vertices of $\triangle \mathrm{PQR}$.

$$
\begin{aligned}
& \text { Area of } \triangle P Q R==\frac{1}{2}\left|\begin{array}{cc}
a t_{1}^{2}-a t_{2}^{2} & a t_{2}^{2}-a t_{3}^{2} \\
2 a t_{1}-2 a t_{2} & 2 a t_{2}-2 a t_{3}
\end{array}\right|=\frac{1}{2}\left|2 a^{2}\left(t_{1}^{2}-t_{2}^{2}\right)\left(t_{2}-t_{3}\right)-2 a^{2}\left(t_{2}^{2}-t_{3}^{2}\right)\left(t_{1}-t_{2}\right)\right| \\
& =a^{2}\left|\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{1}+t_{2}-t_{2}-t_{3}\right)\right| \\
& =a^{2}\left|\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{3}-t_{1}\right)\right| \\
& =\frac{a^{3}}{a}\left|\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{3}-t_{1}\right)\right| \\
& =\frac{1}{8 a}\left|\left(2 a t_{1}-2 a t_{2}\right)\left(2 a t_{2}-2 a t_{3}\right)\left(2 a t_{3}-2 a t_{1}\right)\right| \\
& =\frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|
\end{aligned}
$$

Where $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{R}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ are the vertices of $\triangle \mathrm{PQR}$.
3. Find the coordinates of the vertex and focus, equation of the directrix and axis of the following parabolas. i) $y^{2}+4 x+4 y-3=0 \quad$ ii) $x^{2}-2 x+4 y-3=0$

Sol. i) given parábola is $y^{2}+\mathbf{4 x}+\mathbf{4 y}-\mathbf{3}=\mathbf{0}$

$$
\begin{aligned}
\Rightarrow & y^{2}+4 y=-4 x+3 \\
\Rightarrow & (y+2)^{2}-4=-4 x+3 \\
\Rightarrow & (y+2)^{2}=-4 x+7 \\
\Rightarrow & {[y-(-2)]^{2}=-4\left[\mathrm{x}-\frac{7}{4}\right] } \\
& \mathrm{h}=\frac{7}{4}, \mathrm{k}=-2, \mathrm{a}=1
\end{aligned}
$$

$\operatorname{Vertex} A(h, k)=\left(\frac{7}{4},-2\right)$

Focus $(\mathrm{h}-\mathrm{a}, \mathrm{k})=\left(\frac{7}{4}-1,-2\right)=\left(\frac{3}{4},-2\right)$
Equation of the directrix : $\mathrm{x}-\mathrm{h}-\mathrm{a}=0$

$$
x-\frac{7}{4}-1=0 \Rightarrow 4 x-11=0
$$

Equation of the axis is : $y-k=0 \Rightarrow y+2=0$
ii) Given parábola is $x^{2}-2 x+4 y-3=0$
$\Rightarrow x^{2}-2 x=-4 y+3$
$\Rightarrow(\mathrm{x}-1)^{2}-1=-4 \mathrm{y}+3$
$\Rightarrow(\mathrm{x}-1)^{2}=-4 \mathrm{y}+4$
$\Rightarrow(\mathrm{x}-1)^{2}=-4[\mathrm{y}-1]$
$\mathrm{h}=1, \mathrm{k}=1, \mathrm{a}=1$
Vertex $\mathrm{A}(\mathrm{h}, \mathrm{k})=(1,1)$
Focus $(h, k-a)=(1,1-1)=(1,0)$
Equation of the directrix : $\mathrm{y}-\mathrm{k}-\mathrm{a}=0$

$$
y-1-1=0 \Rightarrow y-2=0
$$

Equation of the axis is, $\mathrm{x}-\mathrm{h}=0 \Rightarrow \mathrm{x}-1=0$.

THEOREM

The equation of the chord joining the two points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ on the parabola $S=0$ is $S_{1}+S_{2}=S_{12}$.

THEOREM

The equation of the tangent to the parabola $\mathrm{S}=0$ at $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\mathrm{S}_{1}=0$.

NORMAL THEOREM

The equation of the normal to the parabola $y^{2}=4 a x$ at $P\left(x_{1}, y_{1}\right)$ is $y_{1}\left(x-x_{1}\right)+\mathbf{2 a}\left(y-y_{1}\right)=0$.
The equation of the normal to $S=0$ at P is : $y_{1}\left(x-x_{1}\right)+2 a\left(y-y_{1}\right)=0$

THEOREM

The condition that the line $y=m x+c$ may be a tangent to the parabola $y^{2}=4 a x$ is $c=a / m$.

Proof :

Equation of the parabola is $y^{2}=4 a x----(1)$
Equation of the line is $y=m x+c \ldots(2)$
Solving (1) and (2),
$(\mathrm{mx}+\mathrm{c})^{2}=4 a x \Rightarrow m^{2} x^{2}+c^{2}+2 m c x=4 a x$
$\Rightarrow m^{2} x^{2}+2(m c-2 a) x+c^{2}=0$ which is a quadratic equation in x . therefore it has two roots.
If (2) is a tangent to the parabola, then the roots of the above equation are equal.
\Rightarrow its discreminent is zero
$\Rightarrow 4(m c-2 a)^{2}-4 m^{2} c^{2}=0$
$\Rightarrow m^{2} c^{2}+4 a^{2}-4 a m c-m^{2} c^{2}=0$
$\Rightarrow a^{2}-a m c=0$
$\Rightarrow a=m c$
$\Rightarrow c=\frac{a}{m}$

II METHOD

Given parabola is $y^{2}=4 a x$.
Equation of the tangent is $y=m x+c----(1)$
Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be the point of contact.
The equation of the tangent at P is
$\mathrm{yy}_{1}-2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)=0 \Rightarrow \mathrm{yy}_{1}=2 \mathrm{ax}+2 \mathrm{ax}_{1}$
Now (1) and (2) represent the same line.
$\therefore \frac{\mathrm{y}_{1}}{1}=\frac{2 \mathrm{a}}{\mathrm{m}}=\frac{2 \mathrm{ax}_{1}}{\mathrm{c}} \Rightarrow \mathrm{x}_{1}=\frac{\mathrm{c}}{\mathrm{m}}, \mathrm{y}_{1}=\frac{2 \mathrm{a}}{\mathrm{m}}$
P lies on the line $y=m x+c \Rightarrow y_{1}=m x_{1}+c$
$\Rightarrow \frac{2 \mathrm{a}}{\mathrm{m}}=\mathrm{m}\left(\frac{\mathrm{c}}{\mathrm{m}}\right)+\mathrm{c} \Rightarrow \frac{2 \mathrm{a}}{\mathrm{m}}=2 \mathrm{c} \Rightarrow \mathrm{c}=\frac{\mathrm{a}}{\mathrm{m}}$

Note: The equation of a tangent to the parabola
$y^{2}=4 a x$ can be taken as $y=m x+a / m$. and the point of contact is $\left(a / m^{2}, 2 a / m\right)$.

COROLLARY

The condition that the line $1 x+m y+n=0$ to touché the parabola $y^{2}=4 a x$ is $a^{2}=\ln$.
Proof :
Equation of the parabola is $y^{2}=4 a x$
Equation of the line is $1 \mathrm{x}+\mathrm{my}+\mathrm{n}=0$
$\Rightarrow \mathrm{y}=-\frac{1}{\mathrm{~m}} \mathrm{x}-\frac{\mathrm{n}}{\mathrm{m}}$
But this line is a tangent to the parabola, therefore
$\mathrm{C}=\mathrm{a} / \mathrm{m} \Rightarrow-\frac{\mathrm{n}}{\mathrm{m}}=\frac{\mathrm{a}}{-\mathrm{l} / \mathrm{m}} \Rightarrow \frac{\mathrm{n}}{\mathrm{m}}=\frac{\mathrm{am}}{\mathrm{l}} \Rightarrow \mathrm{am}^{2}=\ln$
Hence the condition that the line $1 x+m y+n=0$ to touché the parabola $y^{2}=4 a x$ is $\mathrm{am}^{2}=\ln$.

Note : The point of contact of $1 \mathrm{x}+\mathrm{my}+\mathrm{n}=0$ with $\mathrm{y}^{2}=4 \mathrm{ax}$ is $(\mathrm{n} / \mathrm{l},-2 \mathrm{am} / \mathrm{l})$.

COROLLARY

The condition that the line $\mathrm{x}+\mathrm{my}+\mathrm{n}=0$ to touch the parabola $\mathrm{x}^{2}=4 a y$ is $\mathrm{al}^{2}=m n$.

THEOREM

Two tangents can be drawn to a parabola from an external point.

Note

1. If $\mathrm{m}_{1}, \mathrm{~m}_{2}$ are the slopes of the tangents through P , then $\mathrm{m}_{1}, \mathrm{~m}_{2}$ become the roots of equation (1). Hence $\mathrm{m}_{1}+\mathrm{m}_{2}=\mathrm{y}_{1} / \mathrm{x}_{1}, \mathrm{~m}_{1} \mathrm{~m}_{2}=\mathrm{a} / \mathrm{x}_{1}$.
2 : If P is a point on the parabola $S=0$ then the roots of equation (1) coincide and hence only one tangent can be drawn to the parabola through P.
3 : If P is an internal point to the parabola
$S=0$ then the roots of (1) are imaginary and hence no tangent can be drawn to the parabola through P.

THEOREM

The equation in the chord of contact of $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with respect to the parabola $\mathrm{S}=0$ is $\mathrm{S}_{1}=0$.

PARAMETRIC EQUATIONS OF THE PARABOLA

A point (x, y) on the parabola $y^{2}=4 a x$ can be represented as $x=a t^{2}, y=2 a t$ in a single parameter t. Theses equations are called parametric equations of the parabola $y^{2}=4 a x$. The point ($a t^{2}, 2 a t$) is simply denoted by t .

THEOREM

The equation of the tangent $a t\left(a t^{2}, 2 a t\right)$ to the parabola is $y^{2}=4 a x$ is $y t=x+a t^{2}$.
Proof:
Equation of the parabola is $y^{2}=4 a x$.
Equation of the tangent at $\left(\mathrm{at}^{2}, 2 a t\right)$ is $S_{1}=0$.
$\Rightarrow(2 a t) y-2 a\left(x+a t^{2}\right)=0$
$\Rightarrow 2 a t y=2 a\left(x+a t^{2}\right) \Rightarrow y t=x+a t^{2}$.

THEOREM

The equation of the normal to the parabola $y^{2}=4 a x$ at the point t is $y+x t=2 a t+a t^{3}$.
Proof :
Equation of the parabola is $y^{2}=4 a x$.
The equation of the tangent at t is :
$\mathrm{yt}=\mathrm{x}+\mathrm{at}^{2} \Rightarrow \mathrm{x}-\mathrm{yt}+\mathrm{at}^{2}=0$

The equation of the normal at $\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ is

$$
\begin{aligned}
& t\left(x-a t^{2}\right)+1(y-2 a t)=0 \\
& \Rightarrow x t-a t^{3}+y-2 a t=0 \Rightarrow y+x t=2 a t+a t^{3}
\end{aligned}
$$

THEOREM

The equation of the chord joining the points $\mathbf{t}_{\mathbf{1}}$ and $\mathbf{t}_{\mathbf{2}}$ on the parabola $y^{2}=4 a x$ is $y\left(t_{1}+t_{2}\right)=2 x+2 a t_{1} t_{2}$.
Proof :
Equation of the parabola is $y^{2}=4 a x$.
Given points on the parabola are
$P\left(a t_{1}^{2}, 2 a t_{1}\right), Q\left(a t_{2}^{2}, 2 a t_{2}\right)$.
Slope of $\overleftrightarrow{\mathrm{PQ}}$ is

$$
\frac{2 \mathrm{at}_{2}-2 \mathrm{at}_{1}}{a \mathrm{at}_{2}^{2}-\mathrm{at}_{1}^{2}}=\frac{2 \mathrm{a}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)}{\mathrm{a}\left(\mathrm{t}_{2}^{2}-\mathrm{t}_{1}^{2}\right)}=\frac{2}{\mathrm{t}_{1}+\mathrm{t}_{2}}
$$

The equation of $\overleftrightarrow{\mathrm{PQ}}$ is $\mathrm{y}-2 \mathrm{at}_{1}=\frac{2}{\mathrm{t}_{1}+\mathrm{t}_{2}}\left(\mathrm{x}-\mathrm{at}_{1}^{2}\right)$.
$\Rightarrow\left(\mathrm{y}-2 \mathrm{at}_{1}\right)\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)=2\left(\mathrm{x}-\mathrm{at}_{1}^{2}\right)$
$\Rightarrow \mathrm{y}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)-2 \mathrm{at}_{1}^{2}-2 \mathrm{at}_{1} \mathrm{t}_{2}=2 \mathrm{x}-2 \mathrm{at}_{1}^{2}$
$\Rightarrow \mathrm{y}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)=2 \mathrm{x}+2 \mathrm{at}_{1} \mathrm{t}_{2}$.

Note:

If the chord joining the points t_{1} and t_{2} on the parabola $y^{2}=4 a x$ is a focal chord then $t_{1} t_{2}=\mathbf{- 1}$. Proof :
Equation of the parabola is $y^{2}=4 a x$
Focus $S=(a, o)$
The equation of the chord is $y\left(t_{1}+t_{2}\right)=2 x+2 a t_{1} t_{2}$
If this is a focal chord then it passes through the focus $(a, 0)$.
$\therefore 0=2 \mathrm{a}+2 \mathrm{at}_{1} \mathrm{t}_{2} \Rightarrow \mathrm{t}_{1} \mathrm{t}_{2}=-1$.

THEOREM

The point of intersection of the tangents to the parabola $y^{2}=4 a x$ at the points t_{1} and t_{2} is $\left(a t_{1} t_{2}, a\left[t_{1}+t_{2}\right]\right)$.
Proof :
Equation of the parabola is $y^{2}=4 a x$
The equation of the tangent at t_{1} is $\mathrm{yt}_{1}=\mathrm{x}+\mathrm{at}_{1}{ }^{2}$

The equation of the tangent at t_{2} is $\mathrm{yt}_{2}=\mathrm{x}+\mathrm{at}_{2}{ }^{2} \ldots$ (2)
(1) - (2) $\Rightarrow \mathrm{y}\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)=\mathrm{a}\left(\mathrm{t}_{1}^{2}-\mathrm{t}_{2}^{2}\right) \Rightarrow \mathrm{y}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
(1) $\Rightarrow a\left(t_{1}+t_{2}\right) t_{1}=x+a t_{1}^{2}$
$\Rightarrow \mathrm{at}_{1}^{2}+\mathrm{at}_{1} \mathrm{t}_{2}=\mathrm{x}+\mathrm{at}_{1}^{2} \Rightarrow \mathrm{x}=\mathrm{at}_{1} \mathrm{t}_{2}$
\therefore Point of intersection $=\left(\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left[\mathrm{t}_{1}+\mathrm{t}_{2}\right]\right)$.

THEOREM

Three normals can be drawn form a point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$.

