Complex Numbers and Quadratic Equations

- For the complex number z = a + ib, a is called the real part, denoted by Re z and b is called the imaginary part denoted by Im z of the complex number z.
- Let us denote √-1 by the symbol i. Then, we have i² = -1. This means that i is a solution of the equation x² + 1 = 0.
- Let $z_1 = a + ib$ and $z_2 = c + id$ be any two complex numbers. Then, the sum $z_1 + z_2$ is defined as follows: $z_1 + z_2 = (a + c) + i (b + d)$, which is again a complex number.
- Given any two complex numbers z₁ and z₂, the difference z₁ z₂ is defined as follows: z₁ z₂
 = z₁ + (- z₂).
- Let z₁ = a + ib and z₂ = c + id be any two complex numbers. Then, the product z₁ z₂ is defined as follows: z₁ z₂ = (ac bd) + i(ad + bc).

- Given any two complex numbers z_1 and z_2 , where $z_2 \neq 0$, the quotient z_1/z_2 is defined by $z1/z2=z_1 * 1/z_2$.
- $(z_1+z_2)^2=z_1^2+z_2^2+2z_1z_2$
- $(z_1-z_2)^2 = z_1^2 + z_2^2 2z_1z_2$
- $z_1^2 z_2^2 = (z_1 + z_2)(z_1 z_2)$
- Let z = a + ib be a complex number. Then, the modulus of z, denoted by | z |, is defined to be the non-negative real number √a²+b², i.e., | z | = √a² + b² and the conjugate of z, denoted as z, is the complex number a ib, i.e., z = a ib.
- z z'=|z|²
- Polar representation the nonzero complex number $z = x + iy z = r (\cos\theta + i \sin\theta)$ Where $r=\sqrt{x^2+y^2}$.

Quadratic Equations

Roots of equation ax²+bx+c

• $x=(-b+\sqrt{b^2-4ac})/2a$ and $(-b-\sqrt{b^2-4ac})/2a$

or

• (-b+ $\sqrt{4ac}$ - b²i)/2a and (-b - $\sqrt{4ac}$ - b²i)/2a

Sample Examples

• Find the multiplicative inverse of 2 – 3i.

Solution:-

z = 2 - 3i

z'=2 + 3i

 $|z|^2 = (2^2 + (-3)^2) = 13$

 $z^{-1} = z'/|z|^2 = (2+3i)/13 = (2/13) + (3/13)i.$

• Represent the complex number $z = 1 + i \sqrt{3}$ in the polar form.

```
1 = r cos \theta, \sqrt{3} = r sin \theta

r<sup>2</sup> (cos<sup>2</sup> \theta + sin<sup>2</sup> \theta) = 4

r = 2

cos \theta = (1/2), sin \theta = (\sqrt{3}/2)

\theta=(\pi/3)

z = 2(cos \pi/3+i sin \pi/3)

• Solve x<sup>2</sup> + 2 = 0
```

```
x^2 + 2 = 0
```

or $x^2 = -2 x = \pm \sqrt{-2} = \pm \sqrt{2} i$.