Complex Numbers and Quadratic Equations

- For the complex number $z=a+i b$, a is called the real part, denoted by $\operatorname{Re} z$ and b is called the imaginary part denoted by Im z of the complex number z .
- Let us denote $\sqrt{ }-1$ by the symbol i. Then, we have $i^{2}=-1$. This means that i is a solution of the equation $x^{2}+1=0$.
- Let $z_{1}=a+i b$ and $z_{2}=c+i d$ be any two complex numbers. Then, the sum $z_{1}+z_{2}$ is defined as follows: $z_{1}+z_{2}=(a+c)+i(b+d)$, which is again a complex number.
- Given any two complex numbers z_{1} and z_{2}, the difference $z_{1}-z_{2}$ is defined as follows: $z_{1}-z_{2}$ $=z_{1}+\left(-z_{2}\right)$.
- Let $z_{1}=a+i b$ and $z_{2}=c+i d$ be any two complex numbers. Then, the product $z_{1} z_{2}$ is defined as follows: $\mathrm{z}_{1} \mathrm{z}_{2}=(\mathrm{ac}-\mathrm{bd})+\mathrm{i}(\mathrm{ad}+\mathrm{bc})$.
- Given any two complex numbers z_{1} and z_{2}, where $z_{2} \neq 0$, the quotient z_{1} / z_{2} is defined by $z 1 / z 2=z_{1}{ }^{*} 1 / z_{2}$.
- $\left(z_{1}+z_{2}\right)^{2}=z_{1}^{2}+z_{2}^{2}+2 z_{1} z_{2}$
- $\left(z_{1}-z_{2}\right)^{2}=z_{1}{ }^{2}+z 2^{2}-2 z_{1} z_{2}$
- $z_{1}{ }^{2}-z_{2}{ }^{2}=(z 1+z 2)\left(z_{1}-z_{2}\right)$
- Let $z=a+i b$ be a complex number. Then, the modulus of z, denoted by $|z|$, is defined to be the non-negative real number $\sqrt{ } a^{2}+b^{2}$, i.e., $|z|=\sqrt{ } a^{2}+b^{2}$ and the conjugate of z, denoted as z, is the complex number $a-i b$, i.e., $z=a-i b$.
- $z z^{\prime}=|z|^{2}$
- Polar representation the nonzero complex number $z=x+i y-z=r(\cos \theta+i \sin \theta)$ Where $r=\sqrt{ } \mathrm{x}^{2}+\mathrm{y}^{2}$.

Quadratic Equations

Roots of equation $a x^{2}+b x+c$

- $x=\left(-b+\sqrt{b^{2}}-4 a c\right) / 2 a$ and $\left(-b-\sqrt{b^{2}}-4 a c\right) / 2 a$ or
- $\left(-b+\sqrt{ } 4 a c-b^{2} i\right) / 2 a$ and $\left(-b-\sqrt{ } 4 a c-b^{2} i\right) / 2 a$

Sample Examples

- Find the multiplicative inverse of $2-3 \mathrm{i}$.

Solution:-
$z=2-3 i$
$z^{\prime}=2+3 i$
$|z|^{2}=\left(2^{2}+(-3)^{2}\right)=13$
$z^{-1}=\left.z^{\prime}| | z\right|^{2}=(2+3 i) / 13=(2 / 13)+(3 / 13) i$.

- Represent the complex number $\mathrm{z}=1+\mathrm{i} \sqrt{ } 3$ in the polar form.

$$
\begin{aligned}
& 1=r \cos \theta, \sqrt{ } 3=r \sin \theta \\
& r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=4 \\
& r=2 \\
& \cos \theta=(1 / 2), \sin \theta=(\sqrt{ } 3 / 2) \\
& \theta=(\pi / 3) \\
& z=2(\cos \pi / 3+i \sin \pi / 3)
\end{aligned}
$$

- Solve $x^{2}+2=0$

$$
x^{2}+2=0
$$

$$
\text { or } x^{2}=-2 x= \pm \sqrt{ }-2= \pm \sqrt{ } 2 i .
$$

