1.	On colliding in a closed conta	ainer the gas molecules				[RPET 2003]
	(a) Transfer momentum to t	he walls	(b)	Momentum becomes zer	0	
	(c) Move in opposite direction	ons	(d)	Perform Brownian motio	n	
2.	The relation between the gas	pressure P and average kinetic energy	rgy p	er unit volume E is		
		[CBSF	E PM1	[1993; UPSEAT 2000; R]	PMT	2000; RPET 2001; MP PET 2003]
	(a) $P = \frac{1}{2}E$	(b) $P = E$	(c)	$\mathbf{P} = \frac{3}{2} \mathbf{E}$	(d)	$\mathbf{P} = \frac{2}{3} \mathbf{E}$
3.	Kinetic theory of gases provid	le a base for				[AIEEE 2002]
	(a) Charle's law		(b)	Boyle's law		
	(c) Charle's and Boyle's law	7	(d)	None of these		
4.	At constant volume, temperar	ture is increased. Then				[CBSE PMT 1993; JIPMER 2000]
	(a) Collision on walls will be	less	(b)	Number of collisions per	unit	time will increase
	(c) Collisions will be in straig	ght line	(d)	Collisions will not change	è	
5.	Kinetic theory of gases was p	ut forward by				[RPMT 1999]
	(a) Einstein	(b) Newton	(c)	Maxwell	(d)	Raman
6.	Which of the following statem	nents about kinetic theory of gases is	s wro	ng		[AMU 1995]
	(a) The molecules of a gas a	re in continuous random motion				
	(b) The molecules continuou	usly undergo inelastic collisions				
	(c) The molecules do not int	teract with each other except during	g colli	sions		
	(d) The collisions amongst the	he molecules are of short duration				
7.	The pressure exerted by the g	gas on the walls of the container bec	cause			[CPMT 1972]
	(a) It loses kinetic energy					
	(b) It sticks with the walls					
	(c) On collision with the wal	lls there is a change in momentum				
	(d) It is accelerated towards	the walls		1		
8.	In kinetic theory of gases, a r momentum of the molecule i	nolecule of mass m of an ideal gas	collic	les with a wall of vessel w	ith v	elocity V. The change in the linear [AIIMS 1997]
	(a) 2 mV	(b) mV	(c)	– mV	(d)	Zero
9.	Consider a gas with density	$\overline{\mathbf{c}}$ and $\overline{\mathbf{c}}$ as the root mean square v	veloci	y of its molecules contain	ed in	a volume. If the system moves as
	whole with velocity v, then th	e pressure exerted by the gas is				[BHU 1994]
	(a) $\frac{1}{2}\rho \overline{c}^2$	(b) $\frac{1}{2}\rho(\overline{c}+v)^2$	(c)	$\frac{1}{2}\rho(\overline{c}-v)^2$	(d)	$\frac{1}{2}\rho(\overline{c}^2-v)^2$
10.	The kinetic energy of a perfect	o ct gas is 60 ioules and its volume is 3	3 litre	s. then its pressure will be		3
	(a) $2.104 \text{ N}/m^2$	(b) $4 104 \text{ N} / m^2$	(a)	$4 \dots 10^4 \text{ N} / m^2$	(J)	2_{10^4} N $/m^2$
	(a) 2×10 N/m	(b) 4×10 N/m	(C)	$\frac{1}{3}$ × 10 N/m	(a)	$\frac{-1}{3}$ × 10 N / M
11.	The mass of a gas molecule	is 4×10^{-30} kg. If 10^{23} molecules	s strik	e per second at 4 m^2 ar	ea w	tith a velocity 10^7 m/s , then the
	pressure exerted on the surfa	ce will be				
	(a) 1 Pascal	(b) 3 Pascal	(c)	2 Pascal	(d)	4 Pascal
12.	Equal number of molecules of	of hydrogen and oxygen are contai	ined i	n a vessel at one atmosph	eric	pressure. The ratio of the collision
	frequency of hydrogen molec	cules to that of oxygen molecules on	n the o	container walls will be		
	(a) 4:1	(b) 1:4	(c)	1:16	(d)	16:1

Problems based on Ideal gas equation

Basic level

					K	INETIC THEORY OF GASES
13.	In the relation $n = \frac{PV}{RT}$, $n =$					[RPET 2003]
	(a) Number of molecules	(b) Atomic number	(c)	Mass number	(d)	Number of moles
14.	A balloon contains 1500 m	³ of helium at 27°C and 4 atmosp	pheri	c pressure. The volume	of he	elium at -3°C temperature and 2
	atmospheric pressure will be					[BHU 2002]
	(a) $1500 \mathrm{m}^3$	(b) $1700 \mathrm{m}^3$	(c)	$1900 \mathrm{m}^3$	(d)	$2700\mathrm{m}^3$
15.	One litre of helium gas at a temperature attained by the	pressure 76 cm of Hg and tempera gas is	ture	27° is heated till its press	ure a	nd volume are doubled. The fina [CPMT 2000]
	(a) 927°C	(b) 900°C	(c)	627°C	(d)	327°C
16.	The pressure and temperature	re of an ideal gas in a closed vessel a	are 7	20 pka and 40°C respecti	vely.	If $\frac{1}{4}$ th of the gas is released from
	the vessel and the temperatu	re of the remaining gas is raised to 3	53°C	C, the final pressure of the	gas is	EAMCET (Med.) 2000
	(a) 1440 kPa	(b) 1080 kPa	(c)	720 kPa	(d)	540 kPa
17.	A vessels is filled with an idea	al gas at a pressure of 10 atmosphere	es ar	d temperature 27°C. Half	of th	he mass of the gas is removed from
	the vessel and temperature of	of the remaining gas is increased to 8	7°C.	The pressure of the gas in	the	Vessel Will De
	(a) 5 atm	(b) 6 atm	(c)	7 atm	(d)	8 atm
18.	S.I. unit of universal gas cons	stant is	(0)	[MN]	(u) R 198	88: MP PMT 1994: UPSEAT 1999
	(a) cal/°C	(b) I/mol	(c)	$I mol^{-1} K^{-1}$	(d)	I/kơ
10	The product of the processes	(b) 5/mor	(0)	J IIIOI IX	(u)	Jing
19.	(a) A constant	and volume of an ideal gas is	ക	Approx. aqual to the uni		[Manipal MEE 1995]
	(a) A constant (c) Directly proportional to	its temperature	(d)	Inversely proportional to	its te	
20.	A sample of an ideal gas of	ccupies a volume V at a pressure P	and	l absolute temperature T	the	mass of each molecule is m. The
	expression for the density of	gas is $[K = Boltzmann's constant]$, abbolato tompolatalo 1,		[EAMCET 1988; MP PMT 1994
	(a) mKT	(b) P/KT	(c)	P/KTV	(d)	Pm/KT
21.	The gas equation $\frac{PV}{T} = corrected}{T}$	nstant is true for a constant mass of a	n ide	eal gas undergoing		[MP PET 1992
	(a) Isothermal change	(b) Adiabatic change	(c)	Isobaric change	(d)	Any type of change
22.	A box contains n molecules of	of a gas. How will the pressure of the	gas	be effected, if the number	of m	olecules is made 2n
						[MP PMT/PET 1988
	(a) Pressure will decrease		(b)	Pressure will remain unc	hang	ed
	(c) Pressure will be doubles		(d)	Pressure will become thr	ee tin	nes
23.	An ideal gas at 1 atmospher volume is reduced to 4.48 lit	ic pressure and 273K has 22.4 litre re, then the resulting pressure will be	of v	olume. This is heated to $\$$	546K	and then by applying pressure its [MP PET 1989]
	(a) 20 atms	(b) 10 atms	(c)	5 atms	(d)	2.5 atms
24.	At 100K and 0.1 atmospheric change to	ic pressure, the volume of helium ga	is is 1	10 litres. If volume and pr	essur	e are doubled, its temperature wil [MP PMT 1986]
	(a) 400 K	(b) 127 K	(c)	200 K	(d)	25 K
25.	The molecular weights of O	$_2$ and N_2 are 32 and 28 respective	ely. A	t 15°C, the pressure of 1g	gm C	D_2 will be the same as that of 1gm
	N_2 in the same bottle at the	temperature				[MP PMT 1985]
	(a) – 21°C	(b) 13°C	(c)	15°C	(d)	56.4°V

26.	The	air density at Mount Ev	erest i	s less than that at the sea leve	l. It is	found by mountaineers	KI that fo	NETIC T	HEORY OF GASES asting a few hours, the
	extr	a oxygen needed by the	m cor	responds to 30,000 cc at sea le	evel (p	pressure 1 atmosphere, te	empera	ature 27°C)	. Everest is -73° C and
	that	the oxygen cylinder has	capa	city of 5.2 litre, the pressure at	whick	O_2 be filled (at site) in C_2	ylinde	er is	[MNR 1978]
	(a)	3.86 atm	(b)	5.00 atm	(c)	5.77 atm	(d)	1 atm	. 1 . 1 . 1
27.	In o time	order to double the separate separates the initial pressure	aratior	between the molecules (keej	oing t	emperature fixed), the f	inal pi	ressure mu	st be made how many
	(a)	Halved	(b)	1/4th	(c)	1/8th	(d)	1/16th	
28.	A ve one	essel contains 1 mole of mole of He gas (molar i	O ₂ g mass 4	as (molar mass 32) at a temp) at temperature 2T has a pres	eratu sure (re T. The pressure of the of	gas i	s P. An ide	ntical vessel containing
	(a)	P/8	(b)	P	(c)	2P	(d)	8P	
29.	The mol	volume of gas at pressu e will be	ire 21	$\times 10^4$ N / m ² and temperature	e 27°(C is 83 litres. If $R = 8.3$	J/mol/	K, then the	e quantity of gas in gm-
	(a)	15	(b)	42	(c)	7	(d)	14	
30.	A g	as at absolute temperat	ure 3	$00K \text{ has pressure} = 4 \times 10^{-10} \text{ M}$	$\sqrt{M^2}$. Boltzmann constant	= k = 1	$.38 \times 10^{-23}$	J/K. The number of
	mol	ecules per cm ³ is of the o	order o	of					
	(a)	100	(b)	10 ⁵	(c)	10 ⁸	(d)	10 ¹¹	
31.	The mol	size of container B is ecules in the two contain	doubl	e that of A and gas in B is a ill then be	t dou	ible the temperature an	d pres	sure than t	that in A. The ratio of
	(a)	$\frac{N_{\rm B}}{N_{\rm A}} = \frac{1}{1}$	(b)	$\frac{N_B}{N_A} = \frac{2}{1}$	(c)	$\frac{N_B}{N_A} = \frac{4}{1}$	(d)	$\frac{N_B}{N_A} = \frac{1}{2}$	
32.	A ga after	as is enclosed in a vesse r some time the pressure	l at a is red	constant temperature at a pres uced to 2 atmosphere. As a re	sure o sult, t	of 2.5 atmospheres an vo he	olume	4 litre. Due	e to a leak in the vessel
	(a)	20% of the gas has esca	aped o	out	(b)	25% of the gas has esca	ped o	out	
	(c)	20% of the gas remains	in the	e vessel	(d)	25% of the gas remains	in the	vessel	
33.	A ve	essel A of volume 5 litre	has a	a gas at pressure of 80 cm col	umn	of Hg. This is joined to a	nothe	er evacuate	d vessel B of volume 3
	litre	. If now the stopcock S is	s oper	ed and the aperture is maintai	ned a	it constant temperature t	nen th	e common	pressure will become
	(-)	90 (11 							
	(a)	80 cm of Hg				AS		A	
	(b)	50 cm of Hg				5 L 🚫		BL	
	(C)	30 cm of Hg							
24	(d)	INONE OF THESE	hoth	unda ia a moughla nistan. On	0.000	ide of the pistor is a set			and on the other side -
34.	mas	ile a cylinder, closed at is 2m of the same gas. V ilibrium ? The temperatu	Vhat fi Ire is t	action of volume of the cylind he same throughout	er wi	ll be occupied by the larg	ass m ger ma	uss of the ga	as when the piston is in
	(a)	1/4	(b)	1/2	(c)	2/3	(d)	1/3	
35.	A ve	essel has 6g of oxygen a	t press	sure P and temperature 400 K.	A sn	nall hole is made in it so	that C	D_2 leaks ou	t. How much O_2 leaks
	out	if the final pressure is P/2	2 and	temperature 300 K		0	(1)	0	
26	(a)	5g	(b)	4g v of an ideal gas is as shown in	(C)	2g Donsity of the gas at n	(d)	3g	esity at R will be
	1162	3	grahi	i oi an iucai gas is as shuwh lil	ngun	c. Density of the gas at p	onit A	ν_0 . Del	iony at D WIII DC
	(a)	$\frac{3}{4}\rho_0$				P 1 3P	В		
	(b)	$\frac{3}{2} ho_0$				P ₀			
	(c)	$\frac{4}{3} ho_0$					0	\rightarrow	

(d) $2\rho_0$

Advance level

37. A cylindrical tube of uniform cross-sectional area A is fitted with two air tight frictionless pistons. The pistons are connected to each other by a metallic wire. Initially the pressure of the gas is P_0 and temperature is T_0 . Atmospheric pressure is also P_0 . Now the temperature of the gas is increased to $2T_0$, then tension in the wire will be

- (a) $2P_0A$
- (b) P_0A
- (c) $\frac{P_0A}{2}$
- (d) $4P_0A$

_____ Wire _____

38. One mole of an ideal gas undergoes a process $P = \frac{P_0}{1 + \left(\frac{V_0}{V}\right)^2}$. Here P_0 and V_0 are constants. Change in temperature of the gas

when volume is changed from $V = V_0$ to $V = 2V_0$ is

(a) $-\frac{2P_0V_0}{5P_0}$	(b) $\frac{11P_0V_0}{10P_0}$	(c) $-\frac{5P_0V_0}{4P}$	(d) P ₀ V ₀
2K	IUR	4 R.	

Problems based on Vander V	Waal gas equation
-----------------------------------	-------------------

39 .	Every gas (real gas) behaves as an	ideal gas		[CP]	MT 1	997; RPMT 200	0; MP PET 2001]
	(a) At high temperature and low p	igh temperature and low pressure (b) At low temperature and high pressure					
	(c) At normal temperature and pro-	ressure (o	d)	None of these			
40 .	Triple point temperature for water	is nearly					
	(a) 273.16 K (b)	373.16 К (с	c)	100°C	(d)	444.6°C	
41.	The vapour of a substance behaves	s as a gas					[CPMT 1987]
	(a) Below critical temperature	(t	b)	Above critical temperature	е		
	(c) At 100°C	(0	d)	At 1000°C			
42.	Critical temperature is that temperature	ature					[RPET 1987]
	(a) Above which the gas cannot b	e liquified only by increasing pre	essu	re			
	(b) Above which the gas can be lie	quified only by increasing pressu	re				
	(c) Below which a gas cannot be	liquified only by increasing pressu	ure				
	(d) None of these						
43 .	It is possible for a substance to coer	xist in all three phases in equilibri	ium	n, when the substance is at	t		[MP PET 1985]
	(a) Boyle temperature (b)	Critical temperature (o	c)	Triple point	(d)	Dew point	
44.	(>					
	The constant 'a' in the equation $\begin{bmatrix} I \\ I \end{bmatrix}$	$P + n^2 \frac{a}{V^2} (V - nb) = n RT \text{ for } a$	rea	l gas has unit of			
	The constant 'a' in the equation $\begin{bmatrix} I \\ I \end{bmatrix}$ (a) $N - m^{-4}$ (b)	$P + n^{2} \frac{a}{V^{2}} (V - nb) = n RT \text{ for a}$ $N - m^{-2} \qquad (c)$	real c)	l gas has unit of N – m ²	(d)	$N-m^4$	
45.	The constant 'a' in the equation $\begin{bmatrix} I \\ I \end{bmatrix}$ (a) N – m ⁻⁴ (b) The deviation of gases from the be	$P + n^{2} \frac{a}{V^{2}} (V - nb) = n RT \text{ for a }$ $N - m^{-2} \qquad (a)$ what is due to	real c)	l gas has unit of N – m ²	(d)	$N-m^4$	
45.	The constant 'a' in the equation $\begin{pmatrix} I \\ I \end{pmatrix}$ (a) $N - m^{-4}$ (b) The deviation of gases from the be- (a) Colourless molecules	$P + n^{2} \frac{a}{V^{2}} (V - nb) = n RT \text{ for a }$ $N - m^{-2} \qquad (c$ whaviour of ideal gas is due to $(b + nb) = n RT \text{ for a }$	real c) b)	l gas has unit of N – m ² Covalent bonding of mole	(d) ecule	N – m ⁴	
45.	The constant 'a' in the equation $\begin{bmatrix} I \\ (a) \\ N-m^{-4} \\ (b) \end{bmatrix}$ The deviation of gases from the be (a) Colourless molecules (c) Attraction of molecules	$P + n^{2} \frac{a}{V^{2}} (V - nb) = n RT \text{ for a } n^{2}$ $N - m^{-2} \qquad (a)$ what is due to (b)	real c) b) d)	l gas has unit of N – m ² Covalent bonding of mole Absolute scale	(d) ecule	N – m ⁴	
45 . 46 .	The constant 'a' in the equation $\begin{bmatrix} I \\ (a) \\ N-m^{-4} \\ (b) \end{bmatrix}$ The deviation of gases from the being (a) Colourless molecules (c) Attraction of molecules The liquefaction of ideal gas is possible.	$P + n^{2} \frac{a}{V^{2}} (V - nb) = n RT \text{ for a }$ $N - m^{-2} \qquad (a)$ (c)	real c) b) d)	l gas has unit of N – m ² Covalent bonding of mole Absolute scale	(d) ecule	N – m ⁴	
45 . 46 .	The constant 'a' in the equation $\begin{bmatrix} I \\ (a) \\ N-m^{-4} \\ (b) \end{bmatrix}$ The deviation of gases from the be (a) Colourless molecules (c) Attraction of molecules The liquefaction of ideal gas is poss (a) Only at low temperature	$P + n^{2} \frac{a}{V^{2}} (V - nb) = n RT \text{ for a } n^{2}$ $N - m^{-2} \qquad (a^{2})$ (a^{2}) (b^{2}) (b^{2}) (c^{2}) $(c^{$	real c) b) d) b)	l gas has unit of N – m ² Covalent bonding of mole Absolute scale Only at high temperature	(d) ecule	N – m ⁴	
45. 46.	The constant 'a' in the equation $\begin{pmatrix} I \\ (a) \\ N-m^{-4} \\ (b) \end{pmatrix}$ The deviation of gases from the be (a) Colourless molecules (c) Attraction of molecules The liquefaction of ideal gas is poss (a) Only at low temperature (c) Only at very low temperature	$P + n^{2} \frac{a}{V^{2}} (V - nb) = n RT \text{ for a } nc$ $N - m^{-2} \qquad (a)$ (c)	real c) b) d) b) d)	l gas has unit of N – m ² Covalent bonding of mole Absolute scale Only at high temperature None of these	(d) ecule	N – m ⁴	

Problems based on Various speeds

47.	For rela	a gas at temperature T t tionship	he ro	pot-mean square velocity v_{rms} ,	the	most probable speed v_{rmp}	, and	d the average sp	eed v _{av} obey the [MP PET 2003]
	(a)	$v_{av} > v_{rms} > v_{mp}$	(b)	$v_{rms} > v_{av} > v_{mp}$	(c)	$v_{mp} > v_{av} > v_{rms}$	(d)	$v_{mp} > v_{rms} > v_{a}$	w
48 .	The	erms speed of gas molecul	les is	given by				[MNR 199	5; MP PET 2001]
	(a)	$2.5\sqrt{\frac{\mathrm{RT}}{\mathrm{M}}}$	(b)	$1.73\sqrt{\frac{\text{RT}}{\text{M}}}$	(c)	$2.5\sqrt{\frac{M}{RT}}$	(d)	$1.73\sqrt{\frac{M}{RT}}$	
49 .	At a	a given temperature if V_{rms}	, is th	e root mean square velocity o	f the	molecules of a gas and V	s the	velocity of soun	d in it, then these
	are	related as $\left(\gamma = \frac{C_{P}}{C_{v}}\right)$			[0	CPMT 1983, Bhiar CMEE	Г 19	95; MP PMT 200	01; MP PET 2002]
	(a)	$V_{rms} = V_s$	(b)	$V_{\rm rms} = \sqrt{\frac{3}{\gamma}} \times V_{\rm s}$	(c)	$V_{\rm rms} = \sqrt{\frac{\gamma}{3}} \times V_{\rm s}$	(d)	$V_{\rm rms} = \left(\frac{3}{\gamma}\right) \times V_{\rm rms}$	5
50.	On	any planet, the presence of	of atn	nosphere implies ($C_{rms} = root n$	mean	a square velocity of molecu	ıles a	and V_e = escape	velocity)
			a >	a			(1)	[RPMT 199	6; JIPMER 2000]
	(a)	$C_{\rm rms} \ll V_{\rm e}$	(b)	$C_{rms} > V_e$	(c)	$C_{rms} = V_e$	(d)	$C_{\rm rms} = 0$	
51.	To mol	what temperature should lecules become double of	the ł its pr	nydrogen at room temperature evious value	(27°	C) be heated at constant	press	sure so that the	rms velocity of its [MP PMT 2001]
	(a)	1200°C	(b)	927°C	(c)	600°C	(d)	108°C	
52.	At a	given temperature the rai	10 01	rms velocities of hydrogen mo	lecul	e and helium atom will be		[A.	MU (Engg.) 2000]
	(a)	$\sqrt{2}$:1	(b)	$1:\sqrt{2}$	(c)	1:2	(d)	2:1	
53.	If th	e molecular weight of two	gase	es are M_1 and M_2 , then at a t	empe	erature the ratio of root me	ean s	quare velocity v	and $\mathbf{v_2}$ will be
								[MP PMT 1989,	96; DPMT 2001]
	(a)	$\sqrt{\frac{M_1}{M_2}}$	(b)	$\sqrt{\frac{M_2}{M_1}}$	(c)	$\sqrt{\frac{M_1+M_2}{M_1-M_2}}$	(d)	$\sqrt{\frac{M_1-M_2}{M_1+M_2}}$	
54.	Acc	ording to the kinetic theor	y of §	gases, at absolute temperature				[CBSE PMT 19	90; AIIMS 1998]
	(a)	Water freezes			(b)	Liquid helium freezes			
	(c)	Molecular motion stops			(d)	Liquid hydrogen freezes			
55.	The	e temperature of an ideal g	jas is	increased from 27°C to 927°C.	. The	root mean square speed	of its	molecules becor	nes
				10				[NCERT 1983;	CBSE PMT 1994]
50	(a)	Twice	(b)	Half	(c)	Four times	(d)	One-fourth	
56.	At v	vhat temperature the mole	cules	s of nitrogen will have the same	e rms	velocity as the molecules	(J)	AF7°C	[MP PMT 1994]
57	(a) The	root mean square velocit	(D) v of a	a gas molecule of mass m at a g	(C) viven	temperature is proportion	(u)	437 C	CRSE PMT 1990]
07.	inc		y 01 t	r gas molecule of mass in at a g	510011		a to	1	
	(a)	m^0	(b)	m	(c)	√m	(d)	$\frac{1}{\sqrt{m}}$	
58 .	A ga	as is allowed to expand isc	other	mally. The root mean square v	elocit	ty of the molecules			[MP PMT 1986]
	(a)	Will increase		J	(b)	Will decrease			
	(c)	Will remain unchanged			(d)	Depends on the other fac	ctors		
59 .	The	total momentum of the m	nolec	ules of 1 gm mol of a gas in a c	conta	iner at rest of 300 K is			
	(a)	$2 \times \sqrt{3R \times 300}$ gm \times cm / s	sec		(b)	$2 \times 3 \times R \times 300 gm \times cm/$	sec		
	(c)	$1 \times \sqrt{3R \times 300}$ gm \times cm / s	sec		(d)	Zero			

60. If the respective velocities of three molecules of a gas are $\sqrt{7}$, 4 and 5 km/sec., then their rms velocity in km/sec will be

(a) $\frac{2+\sqrt{7}}{3}$ (b) $\frac{4}{\sqrt{3}}$	(c) 4	(d)	$4\sqrt{3}$
---	-------	-----	-------------

61. The rms velocity of molecules of a gas at temperature T is v_{rms} . Then the root mean square of the component of velocity in any one particular direction will be

(a) $v_{rms} / \sqrt{3}$ (b) $\sqrt{3} v_{rms}$ (c) $v_{rms} / 3$ (d) $3v_{rms}$

Problems based on Kinetic energy

- If a piston is pushed rapidly into a container of gas, what will happen to the kinetic energy of the molecules of gas and to the 62. temperature of the gas [JIPMER 2002] (a) Both will increase (b) Kinetic energy increases but the temperature remains unchanged (c) Kinetic energy increases while the temperature decreases (d) Kinetic energy is unchanged while the temperature increases 63. A sealed container with negligible coefficient volumetric expansion contains helium (a monoatomic gas). When it is heated from 300 K [NCERT 1980; DPMT 2002] to 600 K, the average K.E. of helium atoms is (d) Increased by factor $\sqrt{2}$ (a) Halved (b) Unchanged (c) Doubled 64. At 0 K which of the following properties of a gas will be zero [CBSE PMT 1996] (b) Potential energy (a) Kinetic energy (c) Vibrational energy (d) Density 65. The ratio of mean kinetic energy of hydrogen and oxygen at a given temperature is [NCERT 1981; MP PET 1989, 99; MP PMT 1994, 2000, 03; Pb. PMT 2000] (a) 1:16 (b) 1:8 (c) 1:4 (d) 1:1 The average kinetic energy of a gas molecule at 27° C is 6.21×10^{-21} J. Its average kinetic energy at 127° C will be 66. [MP PMT/PET 1998; AIIMS 1999] (a) 52.2×10^{-21} J (b) 5.22×10^{-21} J (c) 10.35×10^{-21} J (d) 11.35×10^{-21} J At 27°C temperature, the kinetic energy of an ideal gas is E_1 . If the temperature is increased to 327°C, the kinetic energy would be 67. [MP PMT 1996] (b) $\frac{1}{2}E_1$ (c) $\sqrt{2}E_1$ (d) $\frac{1}{\sqrt{2}} E_1$ (a) 2E₁ 68. The kinetic energy per gm mol for a diatomic gas at room temperature is [MP PET 1991] (d) $\frac{1}{2}$ RT (b) $\frac{5}{2}$ RT (c) $\frac{3}{2}$ RT (a) 3 RT The ratio of mean kinetic energy of hydrogen and nitrogen at temperature 300 K and 450 K respectively is 69. [MP PET 1990] (a) 3:2 (b) 2:3 (c) 2:21 (d) 4:9 70. If the volume of a gas is doubled at constant pressure, the average translational kinetic energy of its molecules will (c) Increase by a factor $\sqrt{2}$ (d) Become four times (a) Be doubled (b) Remain same **Problems based on Boyle's law** A graph is drawn for a given mass of a gas at constant temperature between PV and P. the curve will be 71. [CPMT 2002] (a) Parabola (b) Straight line inclined at an angle of 45°
 - (c) Straight line parallel to axis of P

(d) Straight line parallel to PV axis

72.	The relationship betwe	en pressure and the density of a gas exi	pressed by Boyle's law. P =	KINETIC THEOR	AY OF GASES
	(a) For any gas under	any conditions	(b) For some gases u	nder any conditions	
	(c) Only if the temper	ature is kept constant	(d) Only if the density	v is constant	
73.	Boyle's law holds for a	n ideal gas during		[AFMC 19	94; KCET 1999]
	(a) Isobaric changes	(b) Isothermal changes	(c) Isochoric changes	(d) Isotonic changes	
74.	At a given temperature	, the pressure of an ideal gas of density	ρ is proportional to		[MP PMT 1999]
	(a) $\frac{1}{\rho^2}$	(b) $\frac{1}{\rho}$	(c) ρ^2	(d) <i>ρ</i>	
75.	For Boyle's law to hold	l the gas should be			[CPMT 1978]
	(a) Perfect and of con	stant mass and temperature	(b) Real and of consta	ant mass and temperature	
	(c) Perfect and at con	stant temperature but variable mass	(d) Real and at consta	ant temperature but variable n	nass
76.	By what percentage sl temperature	nould the pressure of a given mass of	a gas be increased so as	to decrease its volume by 10	% at a constant
	(a) 8.1%	(b) 9.1%	(c) 10.1%	(d) 11.1%	
77.	The figure shows graph	ns of pressure versus density for an idea	l gas at two temperatures 🛛	Γ_1 and Γ_2	
			P A		
	(a) $T_1 > T_2$				
	(b) $T_1 = T_2$			T ₂	
	(c) $T_1 < T_2$			> D	
	(d) Nothing can be pr	edicted		~ F	
		Drohloma haaa	d on Charles law		
			u on Charle's law		
78.	Volume of gas become	four times if			[RPET 2001]
78.	Volume of gas become (a) Temperature beco	four times if	(b) Temperature becc	ome one fourth at constant pre	[RPET 2001] essure
78.	Volume of gas become (a) Temperature beco (c) Temperature beco	four times if me four times at constant pressure mes two times at constant pressure	(b) Temperature becc (d) Temperature becc	ome one fourth at constant pre	[RPET 2001] essure
78. 79.	Volume of gas become (a) Temperature beco (c) Temperature beco A perfect gas at 27°C is	four times if me four times at constant pressure mes two times at constant pressure s heated at constant pressure so as to tri	(b) Temperature becc (d) Temperature becc ple its volume. The temper	ome one fourth at constant pre- omes half at constant pressure rature of the gas will be	[RPET 2001] essure [MP PET 1991]
78. 79.	Volume of gas become (a) Temperature beco (c) Temperature beco A perfect gas at 27°C is (a) 81°C	four times if me four times at constant pressure mes two times at constant pressure s heated at constant pressure so as to tri (b) 900°C	 (b) Temperature becc (d) Temperature becc ple its volume. The temper (c) 627°C tad to double its volume. the 	ome one fourth at constant pre omes half at constant pressure rature of the gas will be (d) 450°C	[RPET 2001] essure [MP PET 1991]
78. 79. 80.	Volume of gas become (a) Temperature beco (c) Temperature beco A perfect gas at 27°C is (a) 81°C 4 moles of an ideal gas	four times if me four times at constant pressure mes two times at constant pressure s heated at constant pressure so as to tri (b) 900°C s is at 0°C. At constant pressure it is hea	 (b) Temperature becc (d) Temperature becc ple its volume. The temper (c) 627°C ted to double its volume, the 	ome one fourth at constant pre omes half at constant pressure rature of the gas will be (d) 450°C nen its final temperature will b	[RPET 2001] essure [MP PET 1991] e [MP PET 1990]
78. 79. 80.	Volume of gas become (a) Temperature beco (c) Temperature beco A perfect gas at 27°C is (a) 81°C 4 moles of an ideal gas (a) 0°C	 four times if me four times at constant pressure mes two times at constant pressure s heated at constant pressure so as to tri (b) 900°C s at 0°C. At constant pressure it is heated 	 (b) Temperature becc (d) Temperature becc (d) Temperature becc (c) 627°C (c) 627°C (c) 546°C 	ome one fourth at constant pre omes half at constant pressure rature of the gas will be (d) 450°C nen its final temperature will b (d) 136.5°C	[RPET 2001] essure [MP PET 1991] e [MP PET 1990]
78. 79. 80. 81.	Volume of gas become (a) Temperature become (c) Temperature become A perfect gas at 27°C is (a) 81°C 4 moles of an ideal gas (a) 0°C The volume of a gas at	 a rootents base a four times if a me four times at constant pressure a meated at constant pressure so as to tri (b) 900°C a is at 0°C. At constant pressure it is heat (b) 273°C 20°C is 200 ml, if the temperature is response 	 (b) Temperature becc (d) Temperature becc (e) 627°C (c) 627°C (c) 546°C (c) 546°C (c) 546°C 	ome one fourth at constant pre omes half at constant pressure rature of the gas will be (d) 450°C nen its final temperature will b (d) 136.5°C t pressure, its volume will be	[RPET 2001] essure [MP PET 1991] e [MP PET 1990] [MP PET 1986]
78. 79. 80. 81.	Volume of gas become (a) Temperature beco (c) Temperature beco A perfect gas at 27°C is (a) 81°C 4 moles of an ideal gas (a) 0°C The volume of a gas at (a) 172.6 ml	 a rootenis base a four times if a me four times at constant pressure a mes two times at constant pressure a heated at constant pressure so as to tri (b) 900°C a is at 0°C. At constant pressure it is heated (b) 273°C a 20°C is 200 ml. if the temperature is refuse (b) 17.26 ml 	 (b) Temperature becc (d) Temperature becc (e) Temperature becc (f) Temperature becc (c) 627°C (c) 627°C (c) 546°C (c) 546°C (c) 546°C (c) 546°C (c) 192.7 ml 	ome one fourth at constant pre- omes half at constant pressure rature of the gas will be (d) 450°C hen its final temperature will be (d) 136.5°C tt pressure, its volume will be (d) 19.27 ml	[RPET 2001] essure [MP PET 1991] e [MP PET 1990] [MP PET 1986]
 78. 79. 80. 81. 82. 	Volume of gas become (a) Temperature beco (c) Temperature beco A perfect gas at 27°C is (a) 81°C 4 moles of an ideal gas (a) 0°C The volume of a gas at (a) 172.6 ml A litre of an ideal gas a	 four times if me four times at constant pressure mes two times at constant pressure s heated at constant pressure so as to tri (b) 900°C s at 0°C. At constant pressure it is heat (b) 273°C 20°C is 200 ml. if the temperature is response to the temperature is response to	 (b) Temperature becc (d) Temperature becc (e) 627°C (c) 627°C (c) 546°C (c) 546°C (c) 192.7 ml (c) 297°C. Then the final volume 	ome one fourth at constant pre- omes half at constant pressure rature of the gas will be (d) 450°C nen its final temperature will be (d) 136.5°C t pressure, its volume will be (d) 19.27 ml olume is approximately	[RPET 2001] essure [MP PET 1991] [MP PET 1990] [MP PET 1986] [NCERT 1974]
78. 79. 80. 81. 82.	Volume of gas become (a) Temperature become (c) Temperature become A perfect gas at 27°C is (a) 81°C 4 moles of an ideal gas (a) 0°C The volume of a gas at (a) 172.6 ml A litre of an ideal gas at (a) 1.2 litres	 (b) 273°C (b) 273°C (c) 273°C (c) 17.26 ml (c) 1.9 litres 	 (b) Temperature becc (d) Temperature becc (e) 627°C (f) 627°C (c) 627°C (c) 546°C (c) 546°C (c) 192.7 ml (c) 297°C. Then the final volume (c) 19 litres 	ome one fourth at constant pre- omes half at constant pressure rature of the gas will be (d) 450°C nen its final temperature will be (d) 136.5°C tt pressure, its volume will be (d) 19.27 ml olume is approximately (d) 2.4 litres	[RPET 2001] essure [MP PET 1991] [MP PET 1990] [MP PET 1986] [NCERT 1974]
78. 79. 80. 81. 82.	Volume of gas become (a) Temperature beco (c) Temperature beco A perfect gas at 27°C is (a) 81°C 4 moles of an ideal gas (a) 0°C The volume of a gas at (a) 172.6 ml A litre of an ideal gas a (a) 1.2 litres	 four times if me four times at constant pressure mes two times at constant pressure s heated at constant pressure so as to tri (b) 900°C is at 0°C. At constant pressure it is heat (b) 273°C 20°C is 200 ml. if the temperature is restricted to the temperature	 (b) Temperature becc (d) Temperature becc (e) Temperature becc (f) Temperature becc (g) Temperature becc (g) 627°C (g) 627°C (g) 546°C 	ome one fourth at constant pre- omes half at constant pressure rature of the gas will be (d) 450°C then its final temperature will be (d) 136.5°C tt pressure, its volume will be (d) 19.27 ml blume is approximately (d) 2.4 litres	[RPET 2001] essure [MP PET 1991] [MP PET 1990] [MP PET 1986] [NCERT 1974]
 78. 79. 80. 81. 82. 	Volume of gas become (a) Temperature become (c) Temperature become A perfect gas at 27°C is (a) 81°C 4 moles of an ideal gas (a) 0°C The volume of a gas at (a) 172.6 ml A litre of an ideal gas at (a) 1.2 litres	 (b) 273°C (c) 273°C (c)	 (b) Temperature becc (d) Temperature becc (e) 627°C (c) 627°C (c) 546°C (c) 546°C (c) 192.7 ml (c) 192.7 ml (c) 19 litres 	ome one fourth at constant pre- omes half at constant pressure rature of the gas will be (d) 450° C (d) 136.5° C (d) 136.5° C (t pressure, its volume will be (d) 19.27 ml blume is approximately (d) 2.4 litres	[RPET 2001] essure [MP PET 1991] [MP PET 1990] [MP PET 1986] [NCERT 1974]
 78. 79. 80. 81. 82. 83. 	Volume of gas become (a) Temperature become (c) Temperature become A perfect gas at 27°C is (a) 81°C 4 moles of an ideal gas (a) 0°C The volume of a gas at (a) 172.6 ml A litre of an ideal gas at (a) 1.2 litres A gas at the temperature pressure will be	<pre>c four times if ome four times at constant pressure omes two times at constant pressure s heated at constant pressure so as to tri (b) 900°C s is at 0°C. At constant pressure it is heat (b) 273°C 20°C is 200 ml. if the temperature is re (b) 17.26 ml t 27°C is heated at a constant pressure (b) 1.9 litres <u>Problems based of</u> are 250 K is contained in a closed ves</pre>	 (b) Temperature becc (d) Temperature becc (e) Temperature becc (f) Temperature becc (g) Temperature becc (h) Temperature becc (c) 627°C (c) 627°C (c) 546°C (c) 546°C (c) 546°C (c) 192.7 ml (c) 192.7 ml (c) 192.7 ml (c) 19 litres On Gay Lussac's law sel. If the gas is heated the	ome one fourth at constant presoure omes half at constant pressure rature of the gas will be (d) 450°C then its final temperature will be (d) 136.5°C tt pressure, its volume will be (d) 19.27 ml olume is approximately (d) 2.4 litres	[RPET 2001] essure [MP PET 1991] [MP PET 1990] [MP PET 1986] [NCERT 1974]
78. 79. 80. 81. 82.	Volume of gas become (a) Temperature become (c) Temperature become A perfect gas at 27°C is (a) 81°C 4 moles of an ideal gas (a) 0°C The volume of a gas at (a) 172.6 ml A litre of an ideal gas at (a) 1.2 litres A gas at the temperature pressure will be (a) 0.4%	a rootents base Four times if Since four times at constant pressure Since the temperature is temperature is the temperature is the temperature is temperature is temperature is temperature is the temperature is temperature i	 (b) Temperature becc (d) Temperature becc (e) 627°C (c) 627°C (c) 546°C (c) 546°C (c) 192.7 ml (c) 19 litres 	ome one fourth at constant pre- omes half at constant pressure rature of the gas will be (d) 450° C (d) 136.5° C (d) 136.5° C (t pressure, its volume will be (d) 19.27 ml olume is approximately (d) 2.4 litres (d) 2.4 litres (d) 2.4 litres (d) 2.4 litres	[RPET 2001] essure [MP PET 1991] [MP PET 1990] [MP PET 1986] [NCERT 1974]
 78. 79. 80. 81. 82. 83. 84. 	Volume of gas become (a) Temperature become (c) Temperature become (a) 81°C 4 moles of an ideal gas (a) 0°C The volume of a gas at (a) 172.6 ml A litre of an ideal gas at (a) 1.2 litres A gas at the temperature pressure will be (a) 0.4% The temperature of a gas its pressure will be	Problems based (b) 1.9 litres (b) 1.9 litres (b) 1.9 litres (c) 1.9 litres (b) 1.9 litres (c) 1.9 litres (c	 (b) Temperature becc (d) Temperature becc (e) Temperature becc (f) Temperature becc (g) Temperature becc (h) Temperature becc (h) Temperature becc (c) 627°C (c) 627°C (c) 546°C (c) 546°C (c) 546°C (c) 192.7 ml (c) 192.7 ml (c) 19 litres On Gay Lussac's law sel. If the gas is heated the (c) 0.1% 	ome one fourth at constant pre- omes half at constant pressure rature of the gas will be (d) 450° C nen its final temperature will be (d) 136.5° C tt pressure, its volume will be (d) 19.27 ml olume is approximately (d) 2.4 litres (d) 2.4 litres (d) 2.4 litres (d) 2.4 litres (d) 2.4 litres (d) 0.8% tant if its temperature is raised	[RPET 2001] essure [MP PET 1991] [MP PET 1990] [MP PET 1986] [NCERT 1974] [se increase in its [gg./Med.) 2001]

- Consider a 1 cc sample of air at absolute temperature T₀ at sea level and another 1 cc sample of air at a height where the pressure is 85. one-third atmosphere. The absolute temperature T of the sample at that height is [NCERT 1980] (a) Equal to $T_0 / 3$

(b) Equal to $3/T_0$

(c) Equal to T_0

(d) Cannot be determined in terms of T_0 from the above data

Problems based on Avogadro's law

86.	At N.T.P., sample of equal vo	olume of chlorine and oxygen is take	en. N	ow ratio of number of mo	lecule	es	[RPET 2000]
	(a) 1:1	(b) 32:27	(c)	2:1	(d)	16:14	
87.	If Avogadro's number is 6×1	0^{23} , then approximate number of 1	moleo	cules in 1 cm ³ of water will	be		
	(a) 1×10^{23}	(b) 6×10^{23}	(c)	22.4×10^{23}	(d)	(1 / 3)×10 ²³	
88.	The number of molecules per	r cc of a gas at STP is					
	(a) 2.68×10^{17}	(b) 2.68×10^{19}	(c)	6×10^{23}	(d)	$22400\!\times\!6\!\times\!10^{23}$	
89 .	The residual pressure of a ve	ssel at 27°C is 1×10^{-11} N / m ² . The	e num	ber of molecules per cc in	this	vessel is nearly	
	(a) 2400	(b) 2.4×10^6	(c)	$10^{-11}\!\times\!6\!\times\!10^{23}$	(d)	$2.68\!\times\!10^{19}\!\times\!10^{-11}$	
		P roblems based	on	Grahms law			
90.	The rate of diffusion is						[AIIMS 1998]
	(a) Faster in solids than in lie	quids and gases	(b)	Faster in liquids than in s	olids	and gases	
	(c) Equal to solids, liquids a	nd gases	(d)	Faster in gases than in lic	luids	and solids	
91.	Ratio of rate of diffusion of H	I_2 gas and O_2 gas is 1 : 4. Ratio of	f their	molecular weights is			[CPMT 1995]
	(a) 16:1	(b) 4:1	(c)	1:16	(d)	1:4	

Problems based on Dalton's law

Basic level

94.

92. Three containers of the same volume contain three different gases. The masses of the molecules are m_1, m_2 and m_3 and the number of molecules in their respective containers are N1, N2 and N3. The gas pressure in the containers are P1, P2 and P3 respectively. All the gases are now mixed and put in one of the containers. The pressure P of mixture will be [CBSE PMT 1992]

(a)
$$P < (P_1 + P_2 + P_3)$$
 (b) $P = \frac{(P_1 + P_2 + P_3)}{3}$ (c) $P = P_1 + P_2 + P_3$ (d) $P > (P_1 + P_2 + P_3)$

93. The pressure and temperature of two different gases is P and T having the volume V for each. They are mixed keeping the same [NCERT 1978] volume and temperature, the pressure of the mixture will be

(c) 2P (d) 4P (a) P/2 (b) P A container encloses two ideal gases. Two moles of the first gas are present, with molar mass M1. Molecules of the second gas have a

molar mass $M_2 = 3M_1$, and 0.5 mole of this gas is present. The fraction of total pressure attributable to the second gas is

(a) $\frac{1}{-}$	(b) $\frac{1}{-}$	(c) $\frac{1}{2}$	(d) $\frac{1}{-}$
2	3	5	4

Advance level

A container of volume 20 litre is filled with a mixture of H_2 and He at 20°C. The pressure is 2 atm. If the mass of mixture is 5 gm, **95**. then the ratio of masses of H_2 and He is

	(a) 0.46	(b) 0.61	(c) 0.75	(d) 0.80
96.	A contains an ideal gas at a	pressure of 5.0×10^5 Pa and at a	a temperature 300 F	X. it is connected by a thin tube to container B with
	four times the volume of A.	B contains the same ideal gas at a	a pressure of 1.0×10	D ⁵ Pa and at a temperature of 400 K. the connecting
	valve is opened. The final pr	essure of the system is		

400 K

(d) d^{-1}

- (a) 200 kPa
- (b) 100 kPa
- (c) 350 kPa
- (d) 250 kPa

Problems based on Law of equipartition of energy

300 K

Mean kinetic energy per degree of freedom of gas molecules is [MP PET 1995; RPET 1999; 2001, 2003] 97. (a) $\frac{3}{2}$ KT (c) $\frac{1}{2}$ KT (d) $\frac{3}{2}$ RT (b) KT 98. The translatory kinetic energy of a gas per gm is [DPMT 2002] (a) $\frac{3}{2} \frac{\text{RT}}{\text{N}}$ (b) $\frac{3}{2}\frac{\text{RT}}{\text{M}}$ (c) $\frac{3}{2}$ RT (d) $\frac{3}{2}$ NKT **99**. A monoatomic gas molecule has [DCE 1999] (a) Three degrees of freedom (b) Four degrees of freedom (c) Five degrees of freedom (d) Six degrees of freedom The degrees of freedom of a triatomic gas is **100**. [CBSE 1999] (a) 2 (b) 4 (c) 6 (d) 8 The kinetic energy, due to translational motion, of most of the molecules of an ideal gas at absolute temperature T is [Roorkee 1994] 101. (c) T/k (d) 1/kT (a) kT (b) k/T 102. The number of translational degrees of freedom for a diatomic gas is [CBSE PMT 1993] (a) 2 (b) 3 (c) 5 (d) 6 A polyatomic gas with n degrees of freedom has a mean energy per molecule given by [CBSE PMT 1992] **103**. (b) $nkT / 2N_A$ (d) 3kT/2 (a) nkT / N_A (c) nkT/2A gas has volume V and pressure p. The total translational kinetic energy of all the molecules of the gas is 104. (b) $\frac{3}{2}$ pV only if the gas is diatomic (a) $\frac{3}{2}$ pV only if the gas is monoatomic (d) $\frac{3}{2}$ pV in all cases (c) $> \frac{3}{2}$ pV if the gas is diatomic Problems based on Mean free path If the pressure in a closed vessel is reduced by drawing out some gas, the mean free path of the molecules 105. **[CPMT 1973]** (a) Is decreased (b) Is increased (c) Remains unchanged (d) Increases or decreases according to the nature of the gas The correct relation connecting C_{rms} , λ and collision frequency NC is 106. (a) $N_c = \frac{C_{rms}}{\lambda}$ (b) $N_c = \frac{\lambda}{C_{max}}$ (c) $N_c = \lambda C_{rms}$ (d) $N_c = \lambda^2 C_{rms}$

107. The mean free path of gas molecules depends on (d = molecular diameter)(a) d (b) d^2 (c) d^{-2}

10

100		1 1 6 . 1 1 1 1	T T	KINETIC THEORY OF GASES	
108.	(a) T	(b) T^{-1}	(c) T^2	(d) T^4	
	(a) 1	Droblems ba	sad on Spacific heat	(u) I	
Tiblems based on Specific fleat					
► B	Basic level				
109.	Universal gas constant is			[Orissa JEE 2003]	
	(a) C_P / C_v	(b) $C_p - C_v$	(c) $C_p + C_v$	(d) C_v / C_p	
110.	The specific heat of an id	leal gas is		[CPMT 1983; RPMT 1999; CPMT 2002]	
	(a) Proportional to T	(b) Proportional to T ²	(c) Proportional to T^3	(d) Independent of T	
111. If the degree of freedom of a gas are f , then the ratio of two specific heats C_p / C_v is given by					
			[MP PMT 1990; M	IP PET 1995; BHU 1997; MP PMT 2001]	
	(a) $\frac{2}{f} + 1$	(b) $1 - \frac{2}{f}$	(c) $1 + \frac{1}{f}$	(d) $1 - \frac{1}{f}$	
112.	112. The value of C_v for one mole of neon gas is[MP PMT 2000]				
	(a) $\frac{1}{2}$ R	(b) $\frac{3}{2}$ R	(c) $\frac{5}{2}$ R	(d) $\frac{7}{2}$ R	
113.	The specific heat of a gas	s at constant pressure is greater tha	in that of the same gas at constant	volume because [UPSEAT 2000]	
	(a) At constant pressure work is done in expanding the gas against constant external pressure				
	(b) At constant volume v	work is done when pressure increa	ises		
	(c) The molecular agitat	tion increases at constant pressure			
	(d) The molecular agitat	tion decreases at constant volume			
114.	4. The specific heat of 1 mole of an ideal gas at constant pressure (C_p) and at constant volume (C_v) which is correct [UPSEAT 2000]				
	(a) C_p of hydrogen gas	is $\frac{5}{2}$ R	(b) C_v of hydrogen gas is	$\frac{7}{2}$ R	
	(c) H_2 has very small va	alues of C_p and C_v	(d) $C_p - C_v = 1.99 \text{cal} / \text{mc}$	$ble - K$ for H_2	
115.	In gases of diatomic mole	ecules, the ratio of the two specific	heats of gases C_p / C_v is	[EAMCET (Med) 1995]	
	(a) 1.66	(b) 1.40	(c) 1.33	(d) 1.00	
116.	When an ideal monoator of the gas is	mic gas is heated at constant press	ure, the fraction of heat energy sup	oplied which increases the internal energy [AIIMS 1995]	
	(a) $\frac{2}{5}$	(b) $\frac{3}{5}$	(c) $\frac{3}{7}$	(d) $\frac{3}{4}$	
117.	If R is gas constant and C	C_p and C_v are specific heats for a	solid per mole, then for the solids	[CPMT 1977]	
	(a) $C_p - C_v = R$	(b) $C_p - C_v << R$	(c) $C_{p} - C_{v} = 0$	(d) $C_p - C_v$ is negative	
118.	When two moles of oxyg specific heat of oxygen at	gen is heated from 0°C to 10°C at t constant volume	t constant volume, its internal ener	rgy changes by 420 J. What is the molar	
	(a) $5.75 \text{ J-K}^{-1} \text{ mol}^{-1}$	(b) $10.5 \text{ J-K}^{-1} \text{ mol}^{-1}$	(c) $21 \text{ J-K}^{-1} \text{ mol}^{-1}$	(d) 42 J-K ⁻¹ mol ⁻¹	
119.	If U represents the intern constant pressure is	al energy of one mole of a gas a	nd T is the absolute temperature, t	then the molar specific heat of the gas at	
	(a) $\frac{\mathrm{d}\mathrm{U}}{\mathrm{d}\mathrm{T}}$	(b) $\frac{\mathrm{d}\mathrm{U}}{\mathrm{d}\mathrm{T}} + \mathrm{R}$	(c) $\frac{dU}{dT} - R$	(d) $R - \frac{dU}{dT}$	

Advance level

when the volume changes from V to 2V at constant pressure P is (c) $\frac{PV}{\gamma - 1}$ (d) $\frac{\gamma PV}{\gamma - 1}$ (a) $\frac{R}{\gamma - 1}$ (b) PV 121. A sample of ideal gas ($\gamma = 1.4$) is heated at constant pressure. If an amount of 100 J heat is supplied to the gas, the work done by the gas is (a) 42.12 J (b) 56.28 J (c) 28.57J (d) 36.23 J **Problems based on Mixture 122.** If one mole of a monoatomic gas $(\gamma = 5/3)$ is mixed with one mole of diatomic gas $(\gamma = 7/5)$, the value of γ for the mixture is [IIT-JEE 1986; RPMT 1996; AIEEE 2002] (b) 1.50 (d) 3.07 (a) 1.40 (c) 1.53 A gaseous mixture contains equal number of hydrogen and nitrogen molecules. Specific heat measurements on this mixture at 123. temperatures below 150 K would indicate that the value of γ (ratio of specific heats) for this mixture is [SCRA 1998] (a) 3/2 (b) 4/3 (c) 5/3 (d) 7/5 Two ideal gases at temperature T_1 and T_2 are mixed. There is no loss of energy. If the masses of molecules of the two gases are m_1 124. and m_2 and number of their molecules are n_1 and n_2 respectively, the temperature of mixture will be (a) $\frac{T_1 + T_2}{n_1 + n_2}$ (c) $\frac{n_2T_1 + n_1T_2}{n_1 + n_2}$ (d) $\frac{n_1T_1 + n_2T_2}{n_1 + n_2}$ (b) $\frac{T_1}{n_1} + \frac{T_2}{n_2}$ **125.** Two moles of a monoatomic gas are mixed with one mole of a diatomic gas. The γ for mixture is (c) $\frac{4}{3}$ (d) $\frac{17}{11}$ (a) $\frac{5}{3}$ (b) $\frac{7}{5}$

The ratio of specific heat of a gas at constant pressure to that at constant volume is γ . The change in internal energy of a mass of gas

126. A mixture of n_1 moles of monoatomic gas and n_2 moles of diatomic gas has $\gamma = 1.5$, then

120.

(a) $n_1 = 2n_2$ (b) $2n_1 = n_2$ (c) $n_1 = n_2$ (d) $2n_1 = 3n_2$