MAGNETISM

[KCET 2004]

1.	A bar magnet is equivalen	t to		[KCET 2004
	(a) Straight conductor ca	rrying current	(b) Toroid carrying curr	rent
	(c) Circular coil carrying		(d) None of these	
2.	The magnetic lines of force			[AIEEE 2003
		o north - pole of the magnet	. ,	le to south – pole of the magnet
	(c) Do not exist			area of cross–section of the bar magnet
3.	A small bar magnet has $(\mu_0 = 4\pi \times 10^{-7} \text{T.m/A})$	s a magnetic moment 1.2 A-	- m °. The magnetic field at a	a distance 0.1 m on its axis will be [MP PMT 2003
	(a) $1.2 \times 10^{-4} \text{ T}$	(b) $2.4 \times 10^{-4} \text{ T}$	(c) $2.4 \times 10^4 \text{ T}$	(d) $1.2 \times 10^2 \text{ T}$
4.	A bar magnet of magnetic	moment M is placed in a magne	etic field of induction <i>B</i> . The torq	ue exerted on it is
				CET (Engg.) 1995; CBSE 1999; BHU 2003
_	(a) <i>M</i> . <i>B</i>	(b) - M. B	(c) $M \times B$	(d) $-M \times B$
5.		other. Magnetic moment of the		gle to each other with north pole of one [MNR 1981; MP PMT 2002
	(a) ml	(b) 2ml	(c) $\sqrt{2}$ ml	(d) $\frac{1}{2}$ ml
6.	A ring of radius R, made of	of an insulating material carries	a charge Q uniformly distributed	d on it. If the ring rotates about the axis
		and normal to plane of the ring	g with constant angular speed	ω , then the magnitude of the magnetic
	moment of the ring is	1		[MP PET 2001
	(a) $Q\omega R^2$	(b) $\frac{1}{2}Q\omega R^2$	(c) $Q\omega^2R$	(d) $\frac{1}{2}$ Q ω^2 R
7.	If a bar magnet of magne the magnet through an an		•	of strength B , the work done in rotating 08; MP PET 1984, 89, 2001; UPSEAT 2001
	(a) $MB(1-\sin\theta)$	(b) MB $\sin \theta$	(c) $MB\cos\theta$	(d) $MB(1-\cos\theta)$
8.	A magnet of magnetic mor	ment M and pole strength m is d	livided in two equal parts, then n	nagnetic moment of each part will be
	[NCERT	1974; MP Board 1985; MP PMT 1	988; CPMT 1988; KCET 1994; AFN	MC 1996; DPMT 1984; MP PET 1984, 2000
	(a) <i>M</i>	(b) <i>M</i> /2	(c) M/4	(d) 2 <i>M</i>
9.	Intensity of magnetization	is given as		[UPSEAT 1999, 2000
	(a) Magnetic moment per volume	unit mass	(b)	Magnetic moment per uni
	(c) Magnetic moment per	unit atomic weight	(d) None of the above	
10.	There is no couple acting	when two bar magnets are place	ed coaxial separated by distance	e because [EAMCET (Engg.) 2000
	(a) There are no forces o lines of action do not coinc		(b)	The forces are parallel and thei
	(c) The forces are perper	ndicular to each other	(d) The forces act alon	ng the same line
11.	A bar magnet when place couple 2.5×10 ⁻⁶ <i>N-m</i> . If the	d at an angle of 30° to the dire e length of the magnet is 5 cm, it	ection of magnetic field induction ts pole strength is	n of 5×10^{-2} T, experiences a momen [EAMCET (Med.) 2000
	(a) $2 \times 10^2 \text{ A} - \text{m}$	(b) $5 \times 10^2 \mathrm{A} - \mathrm{m}$	(c) 2 A – m	(d) 5 A – m
12.	A magnet of magnetic mo	ment 50 î A - m² is placed along	g the x-axis in a magnetic field	$\vec{B} = (0.5\hat{i} + 3.0\hat{j})T$. The torque acting or
	the magnet is			[MP PMT 2000
	(a) 175 k Nm	(b) $150\hat{\mathrm{k}}\mathrm{Nm}$	(c) 75 î Nm	(d) $25\sqrt{37} \hat{k} Nm$
13.	Which of the following stat	tements in not correct about the	magnetic field	[AIIMS 2000
	(a) Magnetic lines of force			
	•	e lines go from north to south po	ole of the magnet	
	(c) The magnetic lines fo	•		
	(d) Tangents to the mag	netic lines give the direction of th	ne magnetic field.	

		2.		MAGNETISM
14.		noment 3.0 A-m ² is placed in a u of $6 \times 10^{-4} N$, the length of the mag		of 2×10 ° <i>I</i> . If each pole of the [EAMCET 2000]
	(a) 0.5 <i>m</i>	(b) 0.3 <i>m</i>	(c) 0.2 m	(d) 0.1 <i>m</i>
15.	A bar magnet is held perpend then the angle by which it is to	dicular to a uniform magnetic field, be rotated is	If the couple acting on the mag	gnet is to be halved by rotating it, [CBSE PMT 2000]
	(a) 30°	(b) 45°	(c) 60°	(d) 90°
16.		and pole strength 40 A-m is place	ed at an angle of 45° in an ur	niform induction field of intensity
	2×10^{-4} T, the couple acting o	on it is		
	(a) $0.5656 \times 10^{-4} \mathrm{N} - \mathrm{m}$	(b) $0.5656 \times 10^{-3} N - m$	(c) $0.656 \times 10^{-4} \text{ N} - \text{m}$	(d) $0.656 \times 10^{-5} N - m$
17.		at a point at a distance 'd from the ic induction at a distance '2d from		
	(a) 4 B	(b) <i>B</i> /2	(c) B/4	(d) 2B
18.		t magnetic lengths have equal mon	• •	[EAMCET (Med.) 1999]
	(a) Equal for both the magnet		Lesser for shorter magnet	(c) More for longer magnet (d)
19.	A bar magnet of pole strength	n 2 <i>amp-m</i> kept in magnetic field of	f induction 4×10^{-5} Wb/m ² such	h that that the axis of the magnet
		the direction of the field. The couple		
	(a) 20 m	(b) 2 m	(c) 3 cm	(d) 20 cm
20.	The dipole moment of a short centre of the magnet is	t bar magnet is 1.25 ampere – met	re ² . The magnetic field on its ax	xis at a distance of 0.5 <i>m</i> form the [MP PAT 1996]
	(a) 1.0×10^{-4} newton/amp-m	neter	(b) 4×10^{-2} newton/amp-me	eter
	(c) 2×10^{-6} newton/amp-me	eter	(d) 6.64×10^{-8} newton/amp	-meter
21.	The field due to a magnet at a	a distance R from the centre of the	magnet is proportional to	[MP PET 1996]
	(a) R^2	(b) R ³	(c) $1/R^2$	(d) $1/R^3$
22.	A bar magnet of magnetic mor	oment $10^4\mathrm{J}/\mathrm{T}$ is free to rotate in	a horizontal plane. The work do	one in rotating the magnet slowly
	from a direction parallel to a ho	norizontal magnetic field of 4×10^{-5}	T to direction 60° from the field	d will be [MP PET 1993, 95]
	(a) 0.2J	(b) 2.0 J	(c) 4.18J	(d) $2 \times 10^2 \mathrm{J}$
23.				er conclusive evidence [KCET 1994]
	(a) It attracts a known magne	et	(b) It repels a known magnet	
0.4	(c) Neither (a) nor (b)		(d) It attracts a steel screw d	
24.	makes an angle of 30° with the	n and having pole strength equal the direction of B. The torque acting		[MP PET 1993]
	(a) $2\pi \times 10^{-7} \text{Nm}$	(b) $2\pi \times 10^{-5} Nm$	(c) 0.5 <i>Nm</i>	(d) $0.5 \times 10^2 \text{Nm}$
25.	_	nort magnet at a point on its axis at on the neutral axis at a distance. x		point of the magnet is 200 gauss. et is [MP PMT 1985; CPMT 1971, 88]
	(a) 100 Gauss	(b) 400 Gauss	(c) 50 Gauss	(d) 200 Gauss
26.		along the extended axis of 2 <i>cm</i> loarratio of magnetic field at <i>A</i> and <i>B</i> w		and 2x cm respectively. From the [EAMCET 1984; CPMT 1986]
	(a) 4:1 exactly	(b) 4:1 approx	(c) 8:1 exactly	(d) 8:1 approx
27.	Two equal bar magnets are keepoint <i>P</i> is (approximately)	ept as shown in the figure. The dir	ection of resultant magnetic field	d, indicated by arrow head at the

N S

(d) 1

(d) 45 g

	(a) P_1 and P_2	(b) P_1 and Q_2	(c) P_1 and Q_1	(d) P_2 and Q_2	
29.	A thin magnet of lengtl	h L is bent into an arc of a semi-	circle. The new length of the magnet	is	
	(a) $\frac{L}{\pi}$	(b) $\frac{L}{2\pi}$	(c) $\frac{2L}{\pi}$	(d) $\frac{2L}{3\pi}$	
30.		ial due to a magnetic dipole and the dipole and the dipole moment of the dipole	at a point on its axis distant 40 e will be	cm from its centre is found to	b be
	(a) $28.6 \mathrm{A} - \mathrm{m}^2$	(b) $32.2 \text{ A} - \text{m}^2$	(c) $38.4 \mathrm{A} - \mathrm{m}^2$	(d) None of these	
31.			ength are A, 2A and 6A. The ratio of		
32.	(a) 6:2:1	(b) 1:2:6	(c) 1:4:6	(d) 36:4:1	
32.	(a) Increase	e centre of a bar magnet, then its (b) Decrease	(c) Not change	(d) None of these	
		Ad	vance Level		
33.	If the angular moment	um of an electron of mass m is J	then the magnitude of the magnetic	moment will be [MP PMT 2	2001]
	(a) $\frac{eJ}{m}$	(b) $\frac{\mathrm{eJ}}{2\mathrm{m}}$	(c) 2eJm	(d) $\frac{2m}{eJ}$	
34.			oles facing each other at a certain on them will be inversely proportional		
	(a) d	(b) d ²	(c) $\frac{1}{d^2}$	(d) d^4	
35.		nagnets each of magnetic momen e of the other (figure). The net ma	at <i>M</i> , are placed in the form of an equagnetic moment of the system is	uilateral triangle with north pole of	one
	(a) Zero				
	(b) 3M			N N	
	(c) $\frac{3M}{2}$		S	S	
	(d) $M\sqrt{3}$		N	S	
36.	applied on the magne	the state of the s	trength 24.0 A-m rests with its cent a pivot so that it is held in equilibrium is	·	
	(a) 5.62N	(b) 2.56N	(c) 6.52N	(d) 6.25N	

(c) 🔪

Consider a magnetic dipole kept in the north -south direction. Let P1, P2, Q1, Q2 be four points at the same distance from the

dipole towards north, south, east and west of the dipole respectively. The directions of the magnetic field due to the dipole are

(b) 🖊

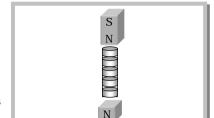
(a) \rightarrow

the same at

28.

37.

(a) 100 g


then the mass of the upper magnet is

(b) 55 g

Two short bar magnets with pole strengths of 900 ab - $amp \times cm$ and 100 ab - $amp \times cm$ are placed with their axes in the same vertical lines with similar poles facing each other. Each magnet has a length of 1 cm. When the separation between the nearer poles is 1 cm. The weight of the upper magnet is supported by the repulsive force between the magnets. If g is 1000 cm/sec^2 ,

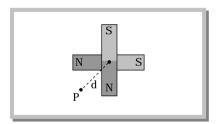
(c) 77.5 g

38. A strong magnet of magnico alloy can hold a chain consisting of several cylinders made of soft iron (figure). If a similar magnet is brought up from below to this chain, what happens if the magnets are arranged with their line poles facing

- (a) Attached cylinders loosen grip
- (b) The attached cylinder tighten the grip
- (c) The cylinders fall one by one on to lower magnet.
- (d) The cylinders loose contact for the upper magnet and remains suspended in between two magnets.
- 39. Two magnets A and B are identical and these are arranged as shown in the figure. Their length is negligible in comparison to the separation between them. A magnetic needle is placed between the magnets at point *P* which gets deflected through an angle *θ* under the influence of magnets. The ratio of distance d₁ and d₂ will be

(c)
$$(2 \cot \theta)^{1/3}$$

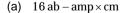
(d)
$$(2 \cot \theta)^{-1/3}$$


40. Two short magnets of equal dipole moments *M* are fastened perpendicularly at their centre (figure). The magnitude of the magnetic field at a distance d from the centre on the bisector of the right angle is

(b)
$$\frac{\mu_0}{4\pi} \frac{M\sqrt{2}}{d^3}$$

(c)
$$\frac{\mu_0}{4\pi} \frac{2\sqrt{2}M}{d^3}$$

(d)
$$\frac{\mu_0}{4\pi} \frac{2M}{d^3}$$



41. Two short magnets of magnetic moment 1000 Am² are placed as shown at the corners of a square of side 10 cm. The net magnetic induction at P is

(c)
$$0.3 T$$

42. A long magnet is placed vertically with its S- pole resting on the table. A neutral point is obtained 10 cm form the pole due geographical north of it. If $B_H = 3.2 \times 10^{-5}$ Tesla, then the strength of the magnet is

(b)
$$32 \text{ ab} - \text{amp} \times \text{cm}$$

(c)
$$64 \text{ ab} - \text{amp} \times \text{cm}$$

(d)
$$8 \text{ ab} - \text{amp} \times \text{cm}$$

В

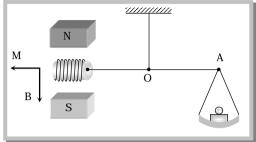
S

43. A bar magnet hangs by a thread attached to the ceiling of a room. When a horizontal magnetic field directed to the right is established,

(a) Both the string and the magnet will deviate form the vertical

(c) The string will remain vertical and the magnet will deviate from the vertical

(d) Both will remain vertical plane of the outer ring


44. A paramagnetic gas consists of atoms each with a dipole moment of 1.5×10^{-23} J/T. Temperature of the gas is $27^{\circ}C$ and its number density is 2×10^{26} m⁻³. What is the maximum magnetisation of the sample possible when placed in an external field

-		\sim	A TI			B 4
T9./E	/A	G		нΉ	•	πъл

(a) $1 \times 10^3 \, \text{A/m}$

induction at the spot where coil is located.

- (b) $2 \times 10^3 \,\text{A/m}$
- (c) $3 \times 10^3 \,\text{A/m}$
- (d) $4 \times 10^3 \,\text{A/m}$
- 45. A small coil C with N = 200 turns is mounted on one end of a balance beam and introduced between the poles of an electromagnet as shown in figure. The cross sectional area of coil is A= 1.0 cm², length of arm OA of the balance beam is I = 30 cm. When there is no current in the coil the balance is in equilibrium. On passing a current I = 22 mA through the coil the equilibrium is restored by putting the additional counter weight of mass $\Delta m = 60 \text{ mg}$ on the balance pan. Find the magnetic

(a) 0.4T

(b) 0.3 T

- (c) 0.2 T
- (d) 0.1 T

Earth's magnetism

Basic Level

- 46. At a place the angle of dip is 30°. If the horizontal component of earth's magnetic field is H, then the total field intensity will be given by

- (c) $H\sqrt{2}$
- (d) $H\sqrt{3}$
- 47. I is the total intensity of earth's magnetic field, H its horizontal component and V the vertical component then these are related as

[CPMT 2000; KCET (Engg./Med.) 2001]

[CPMT 2001]

- (a) $I = V^2 + H^2$
- (b) I = V + H
- (c) $I^2 = V + H$
- $I^2 = V^2 + H^2$

At the north pole of earth 48.

- - (a) V >> H
- (b) V = H = 0
- (c) V<< H
- (d) $V \neq 0, H = 0$
- At a certain place, the horizontal component B_0 and the vertical component V_0 of the earth's magnetic field are equal in 49. magnitude. The total intensity at the place will be

(b) B_0^2

(c) 2B₀

- $\sqrt{2}B_0$
- At a certain place, the horizontal component of earth's magnetic field is $\sqrt{3}$ times the vertical component. The angle of dip at 50. this place is [AFMC 1999, 2000; Pb. CET 2000]

(b) 60°

(c) 45°

- The horizontal component of the earth's magnetic field is 3.6×10^{-5} T where the dip angle is 60°. The magnitude of the earth's 51. [UPSEAT 2000] magnetic field is
 - (a) $3.6 \times 10^{-5} \,\mathrm{T}$
- (b) $7.2 \times 10^{-5} \,\mathrm{T}$
- (c) $2.1 \times 10^{-4} \,\mathrm{T}$
- $2.8\times10^{-4}\,T$
- **52**. The angle between the magnetic meridian and geographical meridian is called
- [MNR 1990; MP PMT 2000]

- (a) Angle of dip
- (b) Angle of declination
- (c) Magnetic moment
- Power of magnetic field
- 53. The null points are on the axial line of a bar magnet, when it is placed such that its south pole points
 - (a) South
- (b) East

- (c) North
- (d) West

54. At magnetic poles of earth, angle of dip is [NCERT 1981; CPMT 1977, 91; MP PET 1997]

(c) 90°

(d) 180°

55. The angle of dip at the magnetic equator is

		IMD DET 4004, MD DMT 4007,	CDSE 1000 00, MD Doord 100	MAGNETISM 80; CPMT 1977, 87, 90; Manipal MEE 1995]
	(a) 0°	(b) 45°	(c) 30°	(d) 90°
56 .	* *	horizontal and vertical components of	· /	
				[MP Board 1974, 76, SCRA 1994]
	(a) 30°	(b) 90°	(c) 45°	(d) 0°
57 .	The lines joining the pla	ces of the same horizontal intensity ar	re known as	[MNR 1984]
	(a) Isogonic lines	(b) A clinic line	(c) Isoclinic line	(d) Isodynamic line
58.	A mariner's compass is		(1-)	For determination of H
	(a) To compare magne(c) For determination of		(b)	For determination of <i>H</i>
59.	(-)	h is allowed to move in a horizontal pl	(d) For determination o	
55.	(a) Will stay in north-so direction only		only	(b) Will stay in east-west
	(c) Will become rigid s	howing no movement	(d) Will stay in any pos	ition
60.	_			m directed in geographical north. If the
	horizontal intensity of ea	arth's magnetic field at that place is 40		eclination will be
	(a) 30°	(b) 45°	(c) 60°	(d) 90°
61.	Two similar poles of strewill be at	ength 3 <i>mwb</i> and 27 <i>m wb</i> are separa	ated by a distance of 24 cm.	The neutral point from the smaller pole
	(a) 6 <i>cm</i>	(b) 9 <i>cm</i>	(c) 4 cm	(d) 7 <i>cm</i>
	strength of the magnet, (a) 5ab – amp × cm	(b) 10ab – amp × cm	(c) 2.5ab – amp × cm	(d) 20ab – amp × cm
		- Turtum		
63.	The true value of angle	of dip at place is 60°, the apparent dip		gle of 30° with magnetic meridian is [AIEEE 2002]
	(a) $\tan^{-1} \frac{1}{2}$	(b) $\tan^{-1}(2)$	(c) $\tan^{-1}\left(\frac{2}{3}\right)$	(d) None of these
64.		o move freely in the magnetic meridial gle $lpha$ to the magnetic meridian, then t		ertical plane in which the needle moves le
	(a) θ	(b) α	(c) More than θ	(d) Less than θ
65.	• •	es of dip in two vertical planes at right	• •	s the true angle of dip then
	(a) $\cot^2 \phi = \cot^2 \phi_1 + \cot^2 \phi_2$	$t^2 \phi_2$ (b) $\cot \phi = \cot^2 \phi_1 + \cot^2 \phi_2$	(c) $\cot \phi = \cot \phi_1 + \cot \phi$	(d) $\cot \phi = \cot \phi_1 / \cot \phi_2$
66.	that of N_2S_2 . The arra	angement is pivoted so that it is free to		$_1S_1$ has a magnetic moment $\sqrt{3}$ times When in equilibrium, what angle should
	N ₁ S ₁ make with magn	etic meridian		A 01 A
	(a) 75°			N_1 N_2
	(b) 60°			
	(c) 30°			S_{i} S_{i} S_{i}
	(d) 45°			· · · · · · · · · · · · · · · · · · ·

(d) 45°

[MP PET 2003]

Tangent law and magnetic instruments

(d) $\frac{2}{\sqrt{3}}$ sec

(d) 0.5 A

Basic Level

poles together. The time period of this combination will be

(a) $2\sqrt{3}$ sec

(a) 0.2 A

magnet is

68.

(b) $\frac{2}{3}$ sec

(b) 0.3 A

The length of a magnet is large compared to its width and breadth. The time period of its oscillation in a vibration magnetometer is 2 sec. The magnet is cut along its length into three equal parts and these parts are then placed on each other with their like

In a tangent galvanometer a current of 0.1 A produces a deflection of 30°. The current required to produce a deflection of 60° is

(c) 2 sec

(c) 0.4 A

69.	A bar magnet is oscillating quadrupled	in earth's magnetic field with a	a period T . What happens to it	s period and motion if its mass is [CBSE PMT 1994; 2003]
	(a) Motion remains S.H.M.	with the new period = $4T$		
	(b) Motion remains S.H.M.	with the new period = $\frac{T}{2}$		
	` '	S.H.M. and period is approximate	ely constant	
70.		uspended freely has a period of o		broken into two equal halves (each d. If its period of oscillation if T , the
				[AIEEE 2003]
	(a) $\frac{1}{4}$	(b) $\frac{1}{2\sqrt{2}}$	(c) $\frac{1}{2}$	(d) 2
71.				ced in such a way that their similar f the magnet is reversed then time
	period of oscillation is T ₂ . No			[CBSE 2002; MP PET 2003]
	(a) $T_1 < T_2$	(b) $T_1 = T_2$	(c) $T_1 > T_2$	(d) $T_2 = \infty$
72.		gnetic moment $ mM_1$ and $ mM_2$ are es together. If the ratio of the time		ion magnetometer with their (i) like
	(a) 0.5	(b) 2	(c) 5/3	M_1 and M_2 is (d) 1/3
73.	` '	a magnet is 2 sec. When it is rem	` '	(-)
				[Kerala PMT 2002]
	(a) 4 sec	(b) 2 sec	(c) 1sec	(d) 1/2 sec
74.	When two magnetic moment	is are compared using equal dista		duced are 45° and 30°. If the length
	(a) 3:1	(b) 3:2	(c) $\sqrt{3}:1$	(d) $2\sqrt{3}:1$
75.				etic meridian is T_0 . If this magnet mass, the new time period will be
				[SCRA 1994; JIPMER 2002]
	(a) $\frac{T_0}{2}$	(b) $\frac{T_0}{\sqrt{2}}$	(c) $\sqrt{2} T_0$	(d) 2 T ₀
76.	A har magnet has a magn	etic moment equal to 5×10 ⁻⁵ W	-m It is suspended in a mad	gnetic field, which has a magnetic

induction B equal to $8\pi \times 10^{-4}$ Tesla. Magnet vibrates with a period of vibration equal to 15 sec. The moment of inertia of the

	(a) $22.5 \times 10^7 \text{kg} - \text{m}^2$	(b) $11.25 \times 10^{-7} \text{kg} - \text{m}^2$	(c) $5.62 \times 10^{-7} \text{kg} - \text{m}^2$	(d) $7.16 \times 10^{-7} \text{kg} - \text{m}^2$
77.	Which of the following stateme	nent is not the true		[KCET 2001]
	(a) While taking reading of meridian	tangent galvanometer, the plane	of the coil must be set at right	angles to that earth's magnetic
	(b) A short magnet is used in	n a tangent galvanometer since a l	long magnet would be heavy and	I may not easily move
	(c) Measurements with the ta	angent galvanometer will be more	accurate when the deflection is a	around 45°
	(d) A tangent galvanometer	can not be used in the polar region	on	
78 .	Before using the tangent galva	vanometer, its coil is set in		[MP PMT 2001]
	(a) Magnetic meridien		(b) Perpendicular to magnetic	c meridien
	(c) At angle of 45° to magnet	etic meridien	(d) It does not require any se	etting
79.	The error in measuring the cu	urrent with a tangent galvanometer	r is minimum when deflection is a	about [MP PET 2001]
	(a) 0°	(b) 30°	(c) 45°	(d) 60°
80.	perpendicular to its length,	bar magnet in earth's magn the time period of each part in t		t is cut into two equal parts
	(a) $\frac{T}{2}$	(b) <i>T</i>	(c) $\sqrt{2}$ T	(d) 2 T
81.	Two tangent galvanometers	s having coils of the same radiusespectively. The ratio of the nur		urrent flowing in them produces [MP PET 1995; MP PMT 1999]
	(a) $\frac{4}{3}$	(b) $\frac{(\sqrt{3}+1)}{1}$	(c) $\frac{(\sqrt{3}+1)}{(\sqrt{3}-1)}$	(d) $\frac{\sqrt{3}}{1}$
82.	When the radius of the tang	gent galvanometer coil is decrea	sed its sensitivity	[KCET 1999]
	(a) Increases	(b) May increase or decrease	(c) Decreases	(d) Remain unaltered
83.	· /	provided in a uniform magnetic	` '	
	_			angle θ , where θ is [KCET 1999]
	(a) 45°	(b) 90°	(c) 60°	(d) 30°
84.	• •	f reduction factor I A is placed	()	(-)
•		ssed through it, the deflection p		and to the magnetic menalan
	(a) 45°	(b) Zero	(c) 30°	(d) 60°
85.	Magnets A and B are geom	metrically similar but the magne	tic moment of A is twice that	of B. If T_1 and T_2 be the time
	periods of the oscillation wh	hen their like poles and unlike p	oles are kept together respecti	vely, then $\frac{T_1}{T_2}$ will be [SCRA 1998]
	(a) $\frac{1}{3}$	(b) $\frac{1}{2}$	(c) $\frac{1}{\sqrt{3}}$	(d) $\sqrt{3}$
86.	Two magnets of same size a magnetic moments is	and mass make respectively 10 a	•	t certain place. The ratio of their 1988; MP PET 1988, 92; CPMT 1997]
	(a) 4:9	(b) 9:4	(c) 2:3	(d) 3:2
37.	suspended in the same way, t		[NCER	RT 1984; CPMT 1991; MP PMT 1994]
	(a) 4 seconds	(b) 2 seconds	(c) 0.5 second	(d) 0.25 second
88.		c moment M_A is found is oscilla ing magnetometer. We may say	that	
	(a) $M_A = 2M_B$	(b) $M_A = 8M_B$	(c) $M_A = 4M_B$	(d) $M_B = 8M_A$
89.		ent M oscillating freely in earth's pled and the earth's field is doubled		s n oscillations per minute. If the e per minute would be [MP PET1991]

89.

MA	CNETICM	

[NCERT 1983]

(d) $\sqrt{2}$ n

(d) 0.5 sec

(d) $\frac{K}{4}$

[MP PMT 1988; CPMT 1975, 77, 79, 89, 90]

92.	20 cm from the compass n		ne compass needle should a	in tan <i>B</i> position at a distance o another small magnet of momen
	(a) 5 <i>cm</i>	(b) 10 <i>cm</i>	(c) 15 <i>cm</i>	(d) 20 cm
		Advance	Level	
93.	The materials suitable for ma	king electromagnets should have		[AIEEE 2004
	(a) High retentivity and low of	coercivity	(b) Low retentivity and low	coercivity
	(c) High retentivity and high	coercivity	(d) Low retentivity and high	n coercivity
94.				uch that they are perpendicular and
		period of oscillation in a horizonta ates in the same field, then the tim	_	ds. One of the magnets is removed [EAMCET 2003
	(a) $2^{1/4}$	(b) $2^{1/2}$	(c) 2	(d) $2^{-1/4}$
95.		a freely suspended bar magnet ir oscillating is reduced to 2sec.The) is 4 <i>sec</i> . When another magnet is [UPSEAT 2000
	(a) $\sqrt{3}$ H	(b) 2H	(c) 3H	(d) 4H
96.	compass needle produces		magnet of same length but	at 18 <i>cm</i> from the centre of the 16 times pole strength as that o
	(a) 0°	(b) 30°	(c) 45°	(d) 60°
97.		t a distance r from a short magned deflection of the compass needle		deflection of 60°. If the distance is
	(a) 30°	(b) $60^{\circ} \times (3)^{1/3}$	(c) $60^{\circ} \times (3)^{2/3}$	(d) $60^{\circ} \times (3)^{3/3}$
98.	end of the hair through 150°		deflected through 30° from the	ist in the hair. On turning the uppe e meridian. Then the angle through neridian, is
	(a) 450°	(b) 360°	(c) 330°	(d) 150°
99.	alone. When a bar magnet is		e axis of the needle it makes	the action of earth's magnetic field 14 oscillations per minute. If the bation of the needle is
	(a) 10 vibrations per minute	(b) 14 vibrations per minute	(c) 4 vibrations per minute	(d) 2 vibrations per minute
100.		s with the second magnet the wire		net through 45°, the wire has to be e same deflection. Then the ratio o

(c) $2\sqrt{2}$ n

(c) 8 sec

(c) 4K

The period of oscillation of a magnet in vibration magnetometer is 2 sec. The period of oscillation of a magnet whose magnetic

The number of turns and radius of cross-section of the coil of a tangent galvanometer are doubled. The reduction factor

90.

91.

(a) 1 sec

K will be

(a) K

moment is four times that of the first magnet is

(b) 4 sec

(b) 2K

	(a)	$\frac{3}{2}$	(b)	$\frac{4}{3}$	(c)	$\frac{7}{6}$	(d)	$\frac{11}{7}$
								Magnetic materials
				Basic Le	vel			
101.	(a)	material of permanent m High retentivity, low coerci Low retentivity, low coerci	vity	et has		Low retentivity, high coerd	-	[KCET 1994, 2003]
102.	Whe	en a diamagnetic substar	ice i	s placed near a magnet the			SE P	MT 1999; AFMC 1999, 2003]
	` '	Attracted	٠,,	Repelled	٠,,	No effect		None of these
103.	Acc	ording to Curie's law, the	ma	gnetic susceptibility of a sub	star	nce at an absolute tempe	ratur	e <i>T</i> is proportional to [CBSE PMT 2003]
	(a)	Τ	(b)	$\frac{1}{T^2}$	(c)	T^2	(d)	$\frac{1}{T}$
104.	Whi	ch of the magnetic materia	ls ha	ve negative susceptibly				[AMU 1994; AIEEE 2003]
	(a)	Diamagnetic materials	(b)	Paramagnetic materials	(c)	Ferromagnetic materials	(d)	Ferromagnetic materials
105.		og can be levitated in a mause the body of the frog b	_	etic field produced by a curre ve as	nt in	a vertical solenoid placed	belc	ow the frog. This is possible
	(a)	Paramagnetic	(b)	Diamagnetic	(c)	Ferromagnetic	(d)	Anti-ferromagnetic
106.	A su	perconductor exhibits perf	ect					[KCET 2003]
	(a)	Ferromagnetism	(b)	Ferromagnetism	(c)	Diamagnetism	(d)	Paramagnetism
107.				led freely between the poles bservation establishes that bis			s fou	und to arrange itself at right
	(a)	Diamagnetic	(b)	Paramagnetic	(c)	Ferromagnetic	(d)	Anti-ferromagnetic
108.		quid is there in a <i>U</i> tube. A racter of liquid is	sud	den magnetic field is produce	ed pe	rpendicular to one of its ar	ms, I	liquid rises up, the magnetic [UPSEAT 2002]
	(a)	Diamagnetic	(b)	Paramagnetic	(c)	Both	(d)	None of these
109.	Sus	ceptibility of a material vari	es as	s $\chi = \frac{C}{T}$, where C is a constant	ant ai	nd T is temperature at absolute	olute	state, then material must be
110.	(c)	Diamagnetic Ferromagnetic ch of the following stateme	nts is	s incorrect about hysterisis	(b) (d)	Paramagnetic Any of the above dependi	ng up	[BHU 2000; UPSEAT 2002] Doon range of temperature [UPSEAT 2002]
	(a)	This effect is common to a	ıll fer	romagnetic substances				
	(b)	The hysterisis loop area is	prop	portional to the thermal energy	y dev	veloped per unit volume of	the m	naterial
	(c)	The hysterisis loop area is	inde	ependent of the thermal energ	y de	veloped per unit volume of	the r	naterial
	(d)	The shape of the hysterisi	s loo	p is characteristic of the mate	rial			
111.	Of c	dia, para and ferromagne	tism	, the universal property of a	ll sul	ostances is		[CPMT 1995, 2002]
	(a)	Diamagnetism	(b)	Paramagnetism	(c)	Ferromagnetism	(d)	All of the above
112.				density inside a sample of ur kept. For the sample to be sui				
				Γ		B↑ _D		

11

AG		

	(a) OQ should be large, OR should be small				Wilditali
	(b) OQ and OR should both be large				
	(c) OQ should be small and OR should be large				
	(d) OQ and OR should both be small				
113.	Which of the following is true				[BHU 2001]
	(a) Diamagnetism is temperature dependent	(b)	Paramagnetism is temper	ature	e dependent
	(c) Paramagnetism is temperature independent	(d)	None of these		
114.	The relative permeability is represented by μ_{r} and the susception	tibility	by χ for a magnetic subs	stanc	e. Then for a paramagnetic
	substance				
					[KCET 2001]
	(a) $\mu_r > 1, \chi > 0$ (b) $\mu_r > 1, \chi < 0$	(c)	$\mu_r < 1, \ \chi > 0$	(d)	$\mu_r < 1, \ \chi < 0$
115.	Identify the paramagnetic substance				[Kerala (Engg.) 2001]
	(a) Iron (b) Aluminium	` ,	Nickel	(d)	Hydrogen
116.	Magnetic susceptibility of which material does not depend on the				[CBSE PM/PD 2001]
	(a) Dia-magnetism (b) Paramagnetism	` ,	Ferro-magnetism	` ,	Ferrite
117.	The magnetic material, which moves from stronger to weaker pa				
	(a) Diamagnetic (b) Paramagnetic	` ,	Ferromagnetic	(d)	Anti-ferromagnetic
118.	The use of study of hysteresis curve for a given material is t	to est	timate the		[CBSE PMT 2000]
	(a) Voltage loss (b) Hysteresis loss	(c)	Current loss	(d)	All of these
119.	When a diamagnetic substances is inserted in a current carrying	coil,	the magnetic field is		[UPSEAT 2000]
	(a) Decreased				
	(b) Unchanged				
	(c) Increased				
	(d) Increased or decreased depending upon the relative volume	e of th	ne substance		
20.	An example for diamagnetic substance is				[KCET 2000]
	(a) Iron (b) Copper	(c)	Aluminum	(d)	Nickel
121.	If a diamagnetic substance is brought near north or south pole of	f a ba	ar magnet, it is [EAMCE	T (Er	ngg.) 1995; CBSE PMT 1999]
	(a) Attracted by the poles	(b)	Repelled by the poles		
	(c) Repelled by the north pole and attracted by the south pole	(d)	Attracted by the north pole	e and	d repelled by the south pole
122.	Substances in which the magnetic moment of a single atom is ne	ot zei	o, are known as		[AFMC 1999]
	(a) Diamagnetic (b) Ferromagnetic	(c)	Paramagnetic	(d)	Ferromagnetic
123.	Which one of the following materials is ferromagnetic				[CPMT 1991; JIPMER 1997]
	(a) Gold (b) Nickel	٠,,	Wood	(d)	Manganese
124.	The major contribution of magnetism in substances is due to		Onin metion of alcotrons		
	(a) Orbital motion of electrons(c) Equally due to orbital and spin motions of electrons	(q)	Spin motion of electrons Hidden magnets		
125.	The softness of a magnetic substance is measured by	(α)	Thaden magnets		
	(a) Magnetic induction (b) Coercivity	(c)	Intensity of magnetisation	(d)	Density
126.	Select the wrong statement				
	(a) In a diamagnetic substance the direction \vec{l} is opposite to the	nat of	\vec{H}		

- (b) In a paramagnetic substance the direction \vec{I} is along \vec{H}
- (c) In a ferromagnetic substance, the direction \vec{I} is along \vec{H}
- (d) In a diamagnetic substance, the direction \vec{I} is along \vec{H}
- **127.** A thin bar of diamagnetic substances is placed between two pole pieces. Which of the following represents the orientation of bar (represented by thick black)
 - (a) N S
- (b)
- S
- c) N

(d)

В

Advance Level

- **128.** The variation of the intensity of magnetisation (*I*) with respect to the magnetising field *H* in a diamagnetic substance is described by the graph **[KCET 2002]**
 - (a) OA
 - (b) *OB*
 - (c) OC
 - (d) *OD*
- **129.** Magnetic moment of Ne is

[RPMT 2000]

(a) 0

- (b) $1.27 \times 10^{-24} \text{ amp-m}^2$
- (c) 3.4×10^{-24} amp-m²
- (d) $5.6 \times 10^{-24} \text{ amp-m}^2$
- **130.** If a diamagnetic solution is poured into a U-tube and one arm of this U-tube placed between the poles of a strong magnet with the meniscus in a line with the field, then the level of the solution will
 - (a) Rise

(b) Fall

- (c) Oscillate slowly
- (d) Remain as such
- **131.** The number of atoms per unit volume in a sample of iron is 9×10^{28} atom/ m^3 . The magnetic moment of every iron atom is 1.5×10^{28} A- m^2 . If all the dipoles are aligned in a domain due to ferromagnetic interaction, then the magnetization of an iron rod of length 10 cm and area of cross-section 1 cm^2 will be
 - (a) $1.8 \times 10^6 \, A/m$
- (b) $1.31 \times 10^5 \text{ A/m}$
- (c) $1.35 \times 10^5 \text{ A/m}$
- (d) $1.4 \times 10^3 \, A/m$