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Instruction-Level Parallelism and Dynamic Exploitation 
 
1Q. What is meant by Instruction Level Parallelism? Explain various techniques to 
implement ILP. 
3.1 Instruction-Level Parallelism: Concepts and Challenges: 

 
Instruction-level parallelism (ILP) is the potential overlap the execution of instructions 

using pipeline concept to improve performance of the system. The various techniques 

that are used to increase amount of parallelism are reduces the impact of data and control 

hazards and increases processor ability to exploit parallelism 

 

There are two approaches to exploiting ILP.  

1. Static Technique – Software Dependent  

2. Dynamic Technique – Hardware Dependent 

 

The static technique is compiler-intensive approach, which have broader adoption in 

the embedded market than the desktop or server markets, the new IA-64 architecture and 

Intel’s Itanium, use this more static approach.  

The dynamic technique is hardware intensive approach, which dominate the desktop 

and server markets and are used in a wide range of processors, including: the Pentium III 

and 4, the Althon, the MIPS R10000/12000, the Sun ultraSPARC III, the Power-PC 603, 

G3, and G4, and the Alpha 21264.  

 
Technique  Reduces  
Forwarding and bypassing  Potential data hazard stalls  
Delayed branches and simple 
branch scheduling  Control hazard stalls  

Basic dynamic scheduling 
(scoreboarding)  Data hazard stalls from true dependences  

Dynamic scheduling with 
renaming  

Data hazard stalls and stalls from anti 
dependences and output dependences  

Dynamic branch prediction  Control stalls  
Issuing multiple instructions per 
cycle  Ideal CPI  
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Speculation  Data hazard and control hazard stalls  
Dynamic memory disambiguation  Data hazard stalls with memory  
Loop unrolling  Control hazard stalls  
Basic compiler pipeline scheduling Data hazard stalls  
Compiler dependence analysis  Ideal CPI, data hazard stalls  
Software pipelining, trace 
scheduling  Ideal CPI, data hazard stalls  

Compiler speculation  Ideal CPI, data, control stalls  
 

FIGURE 3.1 The major techniques together with the component of the CPI equation that 

the technique affects.  

 

The simplest and most common way to increase the amount of parallelism is loop-level 

parallelism. Here is a simple example of a loop, which adds two 1000-element arrays, 

that is completely parallel:  

       for (i=1;i<=1000; i=i+1) 

              x[i] = x[i] + y[i]; 

 

Every iteration of the loop can overlap with any other iteration, although within each 

loop iteration there is little or no opportunity for overlap.  

There are a number of techniques for converting such loop-level parallelism into 

instruction-level parallelism are basically work by unrolling the loop either statically by 

the compiler or dynamically by the hardware. An important alternative method for 

exploiting loop-level parallelism is the use of vector instructions.  

 

2Q. What is CPI? How to calculate Pipeline CPI. 
 

CPI (Cycles per Instruction) for a pipelined processor is the sum of the base CPI and 

all contributions from stalls:  

Pipeline CPI = Ideal pipeline CPI + Structural stalls + Data hazard stalls + Control stalls  

The ideal pipeline CPI is a measure of the maximum performance attainable by the 

implementation. By reducing each of the terms of the right-hand side, we minimize the 

overall pipeline CPI and thus increase the IPC (Instructions per Clock).  
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3Q. Explain various types of Dependences in ILP. 

Data Dependence and Hazards:  

To exploit instruction-level parallelism, determine which instructions can be executed in 

parallel. If two instructions are parallel, they can execute simultaneously in a pipeline 

without causing any stalls. If two instructions are dependent they are not parallel and 

must be executed in order.  

There are three different types of dependences: data dependences (also called true data 

dependences), name dependences, and control dependences.  

Data Dependences: 

An instruction j is data dependent on instruction i if either of the following holds:  

• Instruction i produces a result that may be used by instruction j, or  

• Instruction j is data dependent on instruction k, and instruction k is data dependent 

on instruction i.  

 

The second condition simply states that one instruction is dependent on another if there 

exists a chain of dependences of the first type between the two instructions. This 

dependence chain can be as long as the entire program. 

  

For example, consider the following code sequence that increments a vector of values 

in memory (starting at 0(R1) and with the last element at 8(R2)) by a scalar in register 

F2:  

Loop: L.D F0,0(R1)  ; F0=array element 
ADD.D F4,F0,F2 ; add scalar in F2 
S.D F4,0(R1)  ;store result 
DADDUI R1,R1,#-8 ;decrement pointer 8 bytes (/e 
BNE R1,R2,LOOP ; branch R1!=zero 
 

The data dependences in this code sequence involve both floating point data:  

Loop: L.D F0,0(R1)  ;F0=array element 
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ADD.D F4,F0,F2 ;add scalar in F2 
S.D F4,0(R1)  ;store result 
 

and integer data:  

DADDIU R1,R1,-8 ;decrement pointer  
;8 bytes (per DW) 

BNE R1,R2,Loop ; branch R1!=zero 
 

Both of the above dependent sequences, as shown by the arrows, with each instruction 

depending on the previous one. The arrows here and in following examples show the 

order that must be preserved for correct execution. The arrow points from an instruction 

that must precede the instruction that the arrowhead points to.  

If two instructions are data dependent they cannot execute simultaneously or be 

completely overlapped. The dependence implies that there would be a chain of one or 

more data hazards between the two instructions. Executing the instructions 

simultaneously will cause a processor with pipeline interlocks to detect a hazard and stall, 

thereby reducing or eliminating the overlap. Dependences are a property of programs. 

Whether a given dependence results in an actual hazard being detected and whether that 

hazard actually causes a stall are properties of the pipeline organization. This difference 

is critical to understanding how instruction-level parallelism can be exploited.  

 

The presence of the dependence indicates the potential for a hazard, but the actual 

hazard and the length of any stall is a property of the pipeline. The importance of the data 

dependences is that a dependence (1) indicates the possibility of a hazard, (2) determines 

the order in which results must be calculated, and (3) sets an upper bound on how much 

parallelism can possibly be exploited. Such limits are explored in section 3.8.  

 

Name Dependences  
The name dependence occurs when two instructions use the same register or memory 

location, called a name, but there is no flow of data between the instructions associated 

with that name.  

There are two types of name dependences between an instruction i that precedes 

instruction j in program order:  
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• An antidependence between instruction i and instruction j occurs when instruction 

j writes a register or memory location that instruction i reads. The original 

ordering must be preserved to ensure that i reads the correct value.  

• An output dependence occurs when instruction i and instruction j write the same 

register or memory location. The ordering between the instructions must be 

preserved to ensure that the value finally written corresponds to instruction j.  

 

Both anti-dependences and output dependences are name dependences, as opposed to 

true data dependences, since there is no value being transmitted between the instructions. 

Since a name dependence is not a true dependence, instructions involved in a name 

dependence can execute simultaneously or be reordered, if the name (register number or 

memory location) used in the instructions is changed so the instructions do not conflict.  

This renaming can be more easily done for register operands, where it is called 

register renaming. Register renaming can be done either statically by a compiler or 

dynamically by the hardware. Before describing dependences arising from branches, let’s 

examine the relationship between dependences and pipeline data hazards.  

 
Control Dependences:  

A control dependence determines the ordering of an instruction, i, with respect to 

a branch instruction so that the instruction i is executed in correct program order. Every 

instruction, except for those in the first basic block of the program, is control dependent 

on some set of branches, and, in general, these control dependences must be preserved to 

preserve program order. One of the simplest examples of a control dependence is the 

dependence of the statements in the “then” part of an if statement on the branch. For 

example, in the code segment:  

if  p1 { 
         S1; 

          }; 
if  p2 { 

         S2; 
          }  
S1 is control dependent on p1, and S2is control dependent on p2 but not on p1. In 

general, there are two constraints imposed by control dependences:  
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1. An instruction that is control dependent on a branch cannot be moved before the 

branch so that its execution is no longer controlled by the branch. For example, 

we cannot take an instruction from the then-portion of an if-statement and move it 

before the if-statement.  

2. An instruction that is not control dependent on a branch cannot be moved after the 

branch so that its execution is controlled by the branch. For example, we cannot 

take a statement before the if-statement and move it into the then-portion.  

 

Control dependence is preserved by two properties in a simple pipeline, First, 

instructions execute in program order. This ordering ensures that an instruction that 

occurs before a branch is executed before the branch. Second, the detection of control or 

branch hazards ensures that an instruction that is control dependent on a branch is not 

executed until the branch direction is known.  

 
4Q. What is Data Hazard? Explain various hazards in ILP. 
 
Data Hazards  

A hazard is created whenever there is a dependence between instructions, and they are 

close enough that the overlap caused by pipelining, or other reordering of instructions, 

would change the order of access to the operand involved in the dependence. Because of 

the dependence, preserve order that the instructions would execute in, if executed 

sequentially one at a time as determined by the original source program. The goal of both 

our software and hardware techniques is to exploit parallelism by preserving program 

order only where it affects the outcome of the program. Detecting and avoiding hazards 

ensures that necessary program order is preserved.  

Data hazards may be classified as one of three types, depending on the order of read 

and write accesses in the instructions.  

Consider two instructions i and j, with i occurring before j in program order. The 

possible data hazards are  
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RAW (read after write) — j tries to read a source before i writes it, so j incorrectly 

gets the old value. This hazard is the most common type and corresponds to a true data 

dependence. Program order must be preserved to ensure that j receives the value from i. 

In the simple common five-stage static pipeline a load instruction followed by an integer 

ALU instruction that directly uses the load result will lead to a RAW hazard.  

WAW (write after write) — j tries to write an operand before it is written by i. The 

writes end up being performed in the wrong order, leaving the value written by i rather 

than the value written by j in the destination. This hazard corresponds to an output 

dependence. WAW hazards are present only in pipelines that write in more than one pipe 

stage or allow an instruction to proceed even when a previous instruction is stalled. The 

classic five-stage integer pipeline writes a register only in the WB stage and avoids this 

class of hazards. 

WAR (write after read) — j tries to write a destination before it is read by i, so i 

incorrectly gets the new value. This hazard arises from an antidependence. WAR hazards 

cannot occur in most static issue pipelines even deeper pipelines or floating point 

pipelines because all reads are early (in ID) and all writes are late (in WB). A WAR 

hazard occurs either when there are some instructions that write results early in the 

instruction pipeline, and other instructions that read a source late in the pipeline or when 

instructions are reordered.  

5Q. What is Dynamic Scheduling? Explain how it is used to reduce data hazards. 
3.2 Overcoming Data Hazards with Dynamic Scheduling:  
 
The Dynamic Scheduling is used handle some cases when dependences are unknown at a 

compile time.  In which the hardware rearranges the instruction execution to reduce the 

stalls while maintaining data flow and exception behavior. it also allows code that was 

compiled with one pipeline in mind to run efficiently on a different pipeline. Although a 

dynamically scheduled processor cannot change the data flow, it tries to avoid stalling 

when dependences, which could generate hazards, are present. 
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Dynamic Scheduling: The Idea  

A major limitation of the simple pipelining techniques is that they all use in-order 

instruction issue and execution: Instructions are issued in program order and if an 

instruction is stalled in the pipeline, no later instructions can proceed. Thus, if there is a 

dependence between two closely spaced instructions in the pipeline, this will lead to a 

hazard and a stall. If there are multiple functional units, these units could lie idle. If 

instruction j depends on a long-running instruction i, currently in execution in the 

pipeline, then all instructions after j must be stalled until i is finished and j can execute. 

For example, consider this code:  

DIV.D F0,F2,F4 
ADD.D F10,F0,F8 
SUB.D F12,F8,F14 

 
The SUB.D instruction cannot execute because the dependence of ADD.D on DIV.D 

causes the pipeline to stall; yet SUB.D is not data dependent on anything in the pipeline. 

This hazard creates a performance limitation that can be eliminated by not requiring 

instructions to execute in program order.  

In the classic five-stage pipeline both structural and data hazards could be checked 

during instruction decode (ID): When an instruction could execute without hazards, it 

was issued from ID knowing that all data hazards had been resolved. To allow us to begin 

executing the SUB.Din the above example, we must separate the issue process into two 

parts: checking for any structural hazards and waiting for the absence of a data hazard. 

We can still check for structural hazards when we issue the instruction; thus, we still use 

in-order instruction issue (i.e., instructions issue in program order), but we want an 

instruction to begin execution as soon as its data operand is available. Thus, this pipeline 

does out-of-order execution, which implies out-of-order completion.  

Out-of-order execution introduces the possibility of WAR and WAW hazards, which do 

not exist in the five-stage integer pipeline and its logical extension to an in-order floating-

point pipeline.  

Out-of-order completion also creates major complications in handling exceptions. 

Dynamic scheduling with out-of-order completion must preserve exception behavior in 
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the sense that exactly those exceptions that would arise if the program were executed in 

strict program order actually do arise. Imprecise exceptions can occur because of two 

possibilities:  

1. the pipeline may have already completed instructions that are later in program 

order than the instruction causing the exception, and  

2. the pipeline may have not yet completed some instructions that are earlier in 

program order than the instruction causing the exception.  

To allow out-of-order execution, we essentially split the ID pipe stage of our simple 

five-stage pipeline into two stages:  

1 Issue—Decode instructions, check for structural hazards.  

2 Read operands—Wait until no data hazards, then read operands.  

In a dynamically scheduled pipeline, all instructions pass through the issue stage in 

order (in-order issue); however, they can be stalled or bypass each other in the second 

stage (read operands) and thus enter execution out of order. Score-boarding is a 

technique for allowing instructions to execute out-of-order when there are sufficient 

resources and no data dependences; it is named after the CDC 6600 scoreboard, which 

developed this capability. We focus on a more sophisticated technique, called Tomasulo’s 

algorithm, that has several major enhancements over scoreboarding.  

6Q. Explain Tomasulo’s Approach how it is minimizes Data Hazards. 

Dynamic Scheduling Using Tomasulo’s Approach : 

This scheme was invented by RobertTomasulo, and was first used in the IBM 360/91. 

it uses register renaming to eliminate output and anti-dependencies, i.e. WAW and WAR 

hazards. Output and anti-dependencies are just name dependencies, there is no actual data 

dependence. Tomasulo's algorithm implements register renaming through the use of what 

are called reservation stations. Reservation stations are buffers which fetch and store 

instruction operands as soon as they are available  

In addition, pending instructions designate the reservation station that will provide 

their input. Finally, when successive writes to a register overlap in execution, only the 

last one is actually used to update the register. As instructions are issued, the register 
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specifies for pending operands are renamed to the names of the reservation station, which 

provides register renaming. Since there can be more reservation stations than real 

registers, the technique can even eliminate hazards arising from name dependences that 

could not be eliminated by a compiler.  

The use of reservation stations, rather than a centralized register file, leads to two other 

important properties. First, hazard detection and execution control are distributed: The 

information held in the reservation stations at each functional unit determine when an 

instruction can begin execution at that unit. Second, results are passed directly to 

functional units from the reservation stations where they are buffered, rather than going 

through the registers. This bypassing is done with a common result bus that allows all 

units waiting for an operand to be loaded simultaneously (on the 360/91 this is called the 

common data bus, or CDB). In pipelines with multiple execution units and issuing 

multiple instructions per clock, more than one result bus will be needed.  

 

 
 
 
FIGURE 3.2 The basic structure of a MIPS floating point unit using Tomasulo’s 

algorithm.  
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Figure 3.2 shows the basic structure of a Tomasulo-based MIPS processor, including both 

the floating-point unit and the load/store unit. Instructions are sent from the instruction 

unit into the instruction queue from which they are issued in FIFO order. The reservation 

stations include the operation and the actual operands, as well as information used for 

detecting and resolving hazards. Load buffers have three functions: hold the components 

of the effective address until it is computed, track outstanding loads that are waiting on 

the memory, and hold the results of completed loads that are waiting for the CDB. 

Similarly, store buffers have three functions: hold the components of the effective 

address until it is computed, hold the destination memory addresses of outstanding stores 

that are waiting for the data value to store, and hold the address and value to store until 

the memory unit is available. All results from either the FP units or the load unit are put 

on the CDB, which goes to the FP register file as well as to the reservation stations and 

store buffers. The FP adders implement addition and subtraction, and the FP multipliers 

do multiplication and division.  

  

There are only three steps in Tomasulo’s Aprroach :  

1. Issue—Get the next instruction from the head of the instruction queue. If there is 

a matching reservation station that is empty, issue the instruction to the station 

with the operand values (renames registers)  

2. Execute(EX)— When all the operands are available, place into the corresponding 

reservation stations for execution. If operands are not yet available, monitor the 

common data bus (CDB) while waiting for it to be computed.  

3. Write result (WB)—When the result is available, write it on the CDB and from 

there into the registers and into any reservation stations (including store buffers) 

waiting for this result. Stores also write data to memory during this step: When 

both the address and data value are available, they are sent to the memory unit and 

the store completes.  

Each reservation station has six fields:  

• Op—The operation to perform on source operands S1 and S2.  

• Qj, Qk—The reservation stations that will produce the corresponding source operand; 
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a value of zero indicates that the source operand is already available in Vj or Vk, or is 

unnecessary.  

• Vj, Vk—The value of the source operands. Note that only one of the V field or the Q 

field is valid for each operand. For loads, the Vk field is used to the offset from the 

instruction.  

• A–used to hold information for the memory address calculation for a load or store.  

• Busy—Indicates that this reservation station and its accompanying functional unit are 

occupied.  

 
7Q. How to Reduce Branch Costs with Dynamic Hardware Prediction 
 
3.4.  Reducing Branch Costs with Dynamic Hardware Prediction 
 

Basic Branch Prediction and Branch-Prediction Buffers  

The simplest dynamic branch-prediction scheme is a branch-prediction buffer or branch 

history table. A branch-prediction buffer is a small memory indexed by the lower portion 

of the address of the branch instruction. The memory contains a bit that says whether the 

branch was recently taken or not. if the prediction is correct—it may have been put there 

by another branch that has the same low-order address bits.  The prediction is a hint that 

is assumed to be correct, and fetching begins in the predicted direction. If the hint turns 

out to be wrong, the prediction bit is inverted and stored back. The performance of the 

buffer depends on both how often the prediction is for the branch of interest and how 

accurate the prediction is when it matches.  

 

This simple one-bit prediction scheme has a performance shortcoming: Even if a branch 

is almost always taken, we will likely predict incorrectly twice, rather than once, when it 

is not taken.  

To remedy this, two-bit prediction schemes are often used. In a two-bit scheme, a 

prediction must miss twice before it is changed. Figure 3.7 shows the finite-state 

processor for a two-bit prediction scheme.  
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FIGURE 3.7 The states in a two-bit prediction scheme. 

The two bits are used to encode the four states in the system. In a counter 

implementation, the counters are incremented when a branch is taken and decremented 

when it is not taken; the counters saturate at 00 or 11. One complication of the two-bit 

scheme is that it updates the prediction bits more often than a one-bit predictor, which 

only updates the prediction bit on a mispredict. Since we typically read the prediction bits 

on every cycle, a two-bit predictor will typically need both a read and a write access port.  

The two-bit scheme is actually a specialization of a more general scheme that has an n-

bit saturating counter for each entry in the prediction buffer. With an n-bit counter, the 

counter can take on values between 0 and 2
n 

– 1: when the counter is greater than or equal 

to one half of its maximum value (2
n–1

), the branch is predicted as taken; otherwise, it is 

predicted untaken. As in the two-bit scheme, the counter is incremented on a taken 

branch and decremented on an untaken branch. Studies of n-bit predictors have shown 

that the two-bit predictors do almost as well, and thus most systems rely on two-bit 

branch predictors rather than the more general n-bit predictors.  

If the instruction is decoded as a branch and if the branch is predicted as taken, 

fetching begins from the target as soon as the PC is known. Otherwise, sequential 

fetching and executing continue. If the prediction turns out to be wrong, the prediction 

bits are changed as shown in Figure 3.7. 

Although this scheme is useful for most pipelines, the five-stage, classic pipeline finds 

out both whether the branch is taken and what the target of the branch is at roughly the 

same time, assuming no hazard in accessing the register specified in the conditional 

branch. 
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To exploit more ILP, the accuracy of our branch prediction becomes critical, this 

problem in two ways: by increasing the size of the buffer and by increasing the accuracy 

of the scheme we use for each prediction.  

 

Correlating Branch Predictors:  

These two-bit predictor schemes use only the recent behavior of a single branch to predict 

the future behavior of that branch. It may be possible to improve the prediction accuracy 

if we also look at the recent behavior of other branches rather than just the branch we are 

trying to predict. Consider a small code fragment from the SPEC92 benchmark  

if (aa==2) 

aa=0; 

if (bb==2) 

bb=0; 

if (aa!=bb) { 

 

Here is the MIPS code that we would typically generate for this code fragment 

assuming that aa and bb are assigned to registers R1 and R2:  

DSUBUI R3,R1,#2 

BNEZ R3,L1 ;branch b1 (aa!=2) 

DADD R1,R0,R0 ;aa=0 

L1:  DSUBUI R3,R2,#2 

BNEZ R3,L2 ;branch b2(bb!=2) 

DADD R2,R0,R0 ; bb=0 

L2: DSUBU R3,R1,R2 ;R3=aa-bb 

BEQZ R3,L3 ;branch b3 (aa==bb) 

 

Let’s label these branches b1, b2, and b3. The key observation is that the behavior of 

branch b3 is correlated with the behavior of branches b1 and b2. Clearly, if branches b1 

and b2 are both not taken (i.e., the if conditions both evaluate to true and aa and bb are 

both assigned 0), then b3 will be taken, since aa and bb are clearly equal. A predictor that 
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uses only the behavior of a single branch to predict the outcome of that branch can never 

capture this behavior.  

Branch predictors that use the behavior of other branches to make a prediction are 

called correlating predictors or two-level predictors.  

 

Tournament Predictors: Adaptively Combining Local and Global Predictors  

The primary motivation for correlating branch predictors came from the observation that 

the standard 2-bit predictor using only local information failed on some important 

branches and that by adding global information, the performance could be improved. 

Tournament predictors take this insight to the next level, by using multiple predictors, 

usually one based on global information and one based on local information, and 

combining them with a selector. Tournament predictors can achieve both better accuracy 

at medium sizes (8Kb-32Kb) and also make use of very large numbers of prediction bits 

effectively.  

Tournament predictors are the most popular form of multilevel branch predictors. A 

multilevel branch predictor use several levels of branch prediction tables together with an 

algorithm for choosing among the multiple predictors; Existing tournament predictors use 

a 2-bit saturating counter per branch to choose among two different predictors. The four 

states of the counter dictate whether to use predictor 1 or predictor 2. The state transition 

diagram is shown in Figure 3.16.  

 

                           
 

FIGURE 3.16 The state transition diagram for a tournament predictor has four 

states corresponding to which predictor to use.  
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The advantage of a tournament predictor is its ability to select the right predictor for 

the right branch. Figure 3.17 shows how the tournament predictor selects between a local 

and global predictor depending on the benchmark, as well as on the branch. The ability to 

choose between a prediction based on strictly local information and one incorporating 

global information on a per branch basis is particularly critical in the integer benchmarks.  

 

 
Figure 3.18 looks at the performance of three different predictors (a local 2-bit 

predictor, a correlating predictor, and a tournament predictor) for different numbers of 

bits using SPEC89 as the benchmark. As we saw earlier, the prediction capability of the 

local predictor does not improve beyond a certain size. The correlating predictor shows a 

significant improvement, and the tournament predictor generates slightly better 

performance.  
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8Q. Explain how to achieve high performance instruction delivery. 

3.5. High Performance Instruction Delivery  
 

Branch Target Buffers  

A branch-prediction cache that stores the predicted address for the next instruction after a 

branch is called a branch-target buffer or branch-target cache. 

 

For the classic, five-stage pipeline, a branch-prediction buffer is accessed during the ID 

cycle, so that at the end of ID we know the branch-target address (since it is computed 

during ID), the fall-through address (computed during IF), and the prediction. Thus, by 

the end of ID we know enough to fetch the next predicted instruction. For a branch-target 

buffer, we access the buffer during the IF stage using the instruction address of the 

fetched instruction, a possible branch, to index the buffer. If we get a hit, then we know 

the predicted instruction address at the end of the IF cycle, which is one cycle earlier than 
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for a branch-prediction buffer.  

Because we are predicting the next instruction address and will send it out before 

decoding the instruction, we must know whether the fetched instruction is predicted as a 

taken branch. Figure 3.19 shows what the branch-target buffer looks like. If the PC of the 

fetched instruction matches a PC in the buffer, then the corresponding predicted PC is 

used as the next PC.  

 

 
FIGURE 3.19 A branch-target buffer. 

If a matching entry is found in the branch-target buffer, fetching begins immediately at 

the predicted PC. Note that the entry must be for this instruction, because the predicted 

PC will be sent out before it is known whether this instruction is even a branch. If we did 

not check whether the entry matched this PC, then the wrong PC would be sent out for 

instructions that were not branches, resulting in a slower processor. We only need to store 

the predicted-taken branches in the branch-target buffer, since an untaken branch follows 

the same strategy as a non branch.  

 

Figure 3.20 shows the steps followed when using a branch-target buffer and where 

these steps occur in the pipeline. From this we can see that there will be no branch delay 

if a branch-prediction entry is found in the buffer and is correct. 
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FIGURE 3.20 The steps involved in handling an instruction with a branch-target buffer 

Integrated Instruction Fetch Units  

The recent designs have used an integrated instruction fetch unit that integrates several 

functions:  

1. Integrated branch prediction: the branch predictor becomes part of the instruction 

fetch unit and is constantly predicting branches, so to drive the fetch pipeline.  

2. Instruction prefetch: to deliver multiple instructions per clock, the instruction 

fetch unit will likely need to fetch ahead. The unit autonomously manages the 

prefetching of instructions, integrating it with branch prediction.  

3. Instruction memory access and buffering:.The instruction fetch unit also provides 

buffering, essentially acting as an on-demand unit to provide instructions to the 

issue stage as needed and in the quantity needed.  
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Return Address Predictors: 

The concept of a small buffer of return addresses operating as a stack is used to predict 

the return address. This structure caches the most recent return addresses: pushing a 

return address on the stack at a call and popping one off at a return. If the cache is 

sufficiently large, it will predict the returns perfectly.  

 
9Q. Explain the concept of Dynamic Prediction using Hardware based Speculation. 
  
3.7. Hardware-Based Speculation  

 

The type of code scheduling which executives instructions before or after the branch 

instruction which will not affect the program result is know n as Speculation. Hardware-

based speculation combines three key ideas: dynamic branch prediction to choose which 

instructions to execute, speculation to allow the execution of instructions before the 

control dependences are resolved and dynamic scheduling to deal with the scheduling of 

different combinations of basic blocks. Hardware-based speculation follows the predicted 

flow of data values to choose when to execute instructions. This method of executing 

programs is essentially a data-flow execution: operations execute as soon as their 

operands are available.  

 

The approach is implemented in a number of processors (PowerPC 603/604/G3/G4, 

MIPS R10000/R12000, Intel Pentium II/III/ 4, Alpha 21264, and AMD K5/K6/Athlon), 

is to implement speculative execution based on Tomasulo’s algorithm.  

 

The key idea behind implementing speculation is to allow instructions to execute out 

of order but to force them to commit in order and to prevent any irrevocable action until 

an instruction commits. In the simple single-issue five-stage pipeline we could ensure that 

instructions committed in order, and only after any exceptions for that instruction had 

been detected, simply by moving writes to the end of the pipeline. When we add 

speculation, we need to separate the process of completing execution from instruction 

commit, since instructions may finish execution considerably before they are ready to 
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commit. Adding this commit phase to the instruction execution sequence requires some 

changes to the sequence as well as an additional set of hardware buffers that hold the 

results of instructions that have finished execution but have not committed. This 

hardware buffer, which we call the reorder buffer, is also used to pass results among 

instructions that may be speculated.  

 
The reorder buffer (ROB, for short) provides additional registers in the same way as 

the reservation stations in Tomasulo’s algorithm extend the register set. The ROB holds 

the result of an instruction between the time the operation associated with the instruction 

completes and the time the instruction commits. Hence, the ROB is a source of operands 

for instructions, just as the reservation stations provide operands in Tomasulo’s 

algorithm. The key difference is that in Tomasulo’s algorithm, once an instruction writes 

its result, any subsequently issued instructions will find the result in the register file. With 

speculation, the register file is not updated until the instruction commits; thus, the ROB 

supplies operands in the interval between completion of instruction execution and 

instruction commit. The ROB is similar the store buffer in Tomasulo’s algorithm, and we 

integrate the function of the store buffer into the ROB for simplicity.  

 
Each entry in the ROB contains three fields: the instruction type, the destination field, 

and the value field. The instruction-type field indicates whether the instruction is a 

branch, a store, or a register operation. The destination field supplies the register number 

or the memory address, where the instruction result should be written. The value field is 

used to hold the value of the instruction result until the instruction commits.  

 
Figure 3.29 shows the hardware structure of the processor including the ROB. The 

ROB completely replaces the store buffers. 
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FIGURE 3.29 The basic structure of a MIPS FP unit using Tomasulo’s algorithm and 

extended to handle speculation.  

 
Here are the four steps involved in instruction execution:  

1. Issue—Get an instruction from the instruction queue. Issue the instruction if there 

is an empty reservation station and an empty slot in the ROB, send the operands to the 

reservation station if they available in either the registers or the ROB for execution. If 

either all reservations are full or the ROB is full, then instruction issue is stalled until 

both have available entries. This stage is sometimes called dispatch in a dynamically 

scheduled processor.  

2. Execute—If one or more of the operands is not yet available, monitor the CDB 

(common data bus) while waiting for the register to be computed. When both operands 

are available at a reservation station, execute the operation. 

3. Write result—When the result is available, write it on the CDB and from the CDB 

into the ROB, as well as to any reservation stations waiting for this result. If the value to 
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be stored is not available yet, the CDB must be monitored until that value is broadcast, at 

which time the Value field of the ROB entry of the store is updated. 

4. Commit—There are three different sequences of actions at commit depending on 

whether the committing instruction is: a branch with an incorrect prediction, a store, or 

any other instruction (normal commit). The normal commit case occurs when an 

instruction reaches the head of the ROB and its result is present in the buffer; at this 

point, the processor updates the register with the result and removes the instruction from 

the ROB. Committing a store is similar except that memory is updated rather than a result 

register. When a branch with incorrect prediction reaches the head of the ROB, it 

indicates that the speculation was wrong. The ROB is flushed and execution is restarted 

at the correct successor of the branch. If the branch was correctly predicted, the branch is 

finished. Some machines call this commit phase completion or graduation.  

 

10Q. Explain various limitations of ILP. 

 

3.8. Studies of the Limitations of ILP  

The Hardware Model  

An ideal processor is one where all artificial constraints on ILP are removed. The only 

limits on ILP in such a processor are those imposed by the actual data flows either 

through registers or memory.  

The assumptions made for an ideal or perfect processor are as follows:  

1. Register renaming—There are an infinite number of virtual registers available and 

hence all WAW and WAR hazards are avoided and an unbounded number of instructions 

can begin execution simultaneously.  

2. Branch prediction—Branch prediction is perfect. All conditional branches are 

predicted exactly.  

3. Jump prediction—All jumps (including jump register used for return and computed 

jumps) are perfectly predicted. When combined with perfect branch prediction, this is 

equivalent to having a processor with perfect speculation and an unbounded buffer of 

instructions available for execution.  

4. Memory-address alias analysis—All memory addresses are known exactly and a load 
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can be moved before a store provided that the addresses are not identical.  

 

Assumptions 2 and 3 eliminate all control dependences. Likewise, assumptions 1 and 4 

eliminate all but the true data dependences. Together, these four assumptions mean that 

any instruction in the of the program’s execution can be scheduled on the cycle 

immediately following the execution of the predecessor on which it depends.  

 

Limitations on the Window Size and Maximum Issue Count  

 

A dynamic processor might be able to more closely match the amount of parallelism 

uncovered by our ideal processor. consider what the perfect processor must do:  

1. Look arbitrarily far ahead to find a set of instructions to issue, predicting all 

branches perfectly.  

2. Rename all register uses to avoid WAR and WAW hazards.  

3. Determine whether there are any data dependencies among the instructions in the 

issue packet; if so, rename accordingly.  

4. Determine if any memory dependences exist among the issuing instructions and 

handle them appropriately.  

5. Provide enough replicated functional units to allow all the ready instructions to 

issue.  

 

Obviously, this analysis is quite complicated. For example, to determine whether n 

issuing instructions have any register dependences among them, assuming all instructions 

are register-register and the total number of registers is unbounded, requires  

 
2n-2+2n-4+……..+2 = 2∑i=1 

n-1 i    =   [2 (n-1)n]/2  = n2 -n  
 

 

comparisons. Thus, to detect dependences among the next 2000 instructions—the default 

size we assume in several figures—requires almost four million comparisons! Even 

issuing only 50 instructions requires 2450 comparisons. This cost obviously limits the 

number of instructions that can be considered for issue at once.  
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In existing and near-term processors, the costs are not quite so high, since we need 

only detect dependence pairs and the limited number of registers allows different 

solutions. Furthermore, in a real processor, issue occurs in-order and dependent 

instructions are handled by a renaming process that accommodates dependent renaming 

in one clock. Once instructions are issued, the detection of dependences is handled in a 

distributed fashion by the reservation stations or scoreboard.  

The set of instructions that are examined for simultaneous execution is called the 

window. Each instruction in the window must be kept in the processor and the number of 

comparisons required every clock is equal to the maximum completion rate times the 

window size times the number of operands per instruction (today typically 6 x 80 x 2= 

960), since every pending instruction must look at every completing instruction for either 

of its operands. Thus, the total window size is limited by the required storage, the 

comparisons, and a limited issue rate, which makes larger window less helpful. To date, 

the window size has been in the range of 32 to 126, which can require over 2,000 

comparisons. The HP PA 8600 reportedly has over 7,000 comparators!  

The window size directly limits the number of instructions that begin execution in a 

given cycle.  

  

The Effects of Realistic Branch and Jump Prediction : 

 
Our ideal processor assumes that branches can be perfectly predicted: The outcome of 

any branch in the program is known before the first instruction is executed. Figures 3.38 

and 3.39 show the effects of more realistic prediction schemes in two different formats. 

Our data is for several different branch-prediction schemes varying from perfect to no 

predictor. We assume a separate predictor is used for jumps. Jump predictors are 

important primarily with the most accurate branch predictors, since the branch frequency 

is higher and the accuracy of the branch predictors dominates.  
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The five levels of branch prediction shown in these figures are  

1. Perfect—All branches and jumps are perfectly predicted at the start of execution.  

2. Tournament-based branch predictor—The prediction scheme uses a correlating 

two-bit predictor and a noncorrelating two-bit predictor together with a selector, 

which chooses the best predictor for each branch.  

3. Standard two-bit predictor with 512 two-bit entries—In addition, we assume a 16-

entry buffer to predict returns.  

4. Static—A static predictor uses the profile history of the program and predicts that 

the branch is always taken or always not taken based on the profile.  

5. None—No branch prediction is used, though jumps are still predicted. Parallelism 

is largely limited to within a basic block.  
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Branch prediction accuracy  

The Effects of Finite Registers  

Our ideal processor eliminates all name dependences among register references using an 

infinite set of physical registers. Figures 3.41 and 3.42 show the effect of reducing the 

number of registers available for renaming, again using the same data in two different 

forms. Both the FP and GP registers are increased by the number of registers shown on 

the axis or in the legend.  

 
 

Figure 3.41 shows that the impact of having only a finite number of registers is 

significant if extensive parallelism exists. Although these graphs show a large impact on 

the floating-point programs, the impact on the integer programs is small primarily 

because the limitations in window size and branch prediction have limited the ILP 

substantially, making renaming less valuable. In addition, notice that the reduction in 

available parallelism is significant even if 64 additional integer and 64 additional FP 

registers are available for renaming, which is more than the number of extra registers 

available on any existing processor as of 2000.  

Although register renaming is obviously critical to performance, an infinite number of 

registers is obviously not practical. Thus, for the next section, we assume that there are 

256 integer and 256 FP registers available for renaming—far more than any anticipated 
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processor has.  

 
FIGURE 3.42 The reduction in available parallelism is significant when fewer than 

an unbounded number of renaming registers are available  

 

The Effects of Imperfect Alias Analysis  

Our optimal model assumes that it can perfectly analyze all memory dependences, as well 

as eliminate all register name dependences. Of course, perfect alias analysis is not 

possible in practice: The analysis cannot be perfect at compile time, and it requires a 

potentially unbounded number of comparisons at runtime  
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Figures 3.43 and 3.44 show the impact of three other models of memory alias analysis, in 

addition to perfect analysis. The three models are:  

1 Global/stack perfect—This model does perfect predictions for global and stack 

references and assumes all heap references conflict. This model represents an idealized 

version of the best compiler-based analysis schemes currently in production. Recent and 

ongoing research on alias analysis for pointers should improve the handling of pointers to 

the heap in the future.  

2 Inspection—This model examines the accesses to see if they can be determined 

not to interfere at compile time. For example, if an access uses R10 as a base register 

with an offset of 20, then another access that uses R10 as a base register with an offset of 

100 cannot interfere. In addition, addresses based on registers that point to different 

allocation areas (such as the global area and the stack area) are assumed never to alias. 

This analysis is similar to that performed by many existing commercial compilers, though 

newer compilers can do better, at least for loop-oriented programs.  

3. None—All memory references are assumed to conflict.  

The dynamically scheduled processors rely on dynamic memory disambiguation and are 

limited by three factors:  

1 To implement perfect dynamic disambiguation for a given load, we must know 

the memory addresses of all earlier stores that not yet committed, since a load may have a 

dependence through memory on a store. One technique for reducing this limitation on in-

order address calculation is memory address speculation. With memory address 

speculation, the processor either assumes that no such memory dependences exist or uses 

a hardware prediction mechanism to predict if a dependence exists, stalling the load if a 

dependence is predicted. Of course, the processor can be wrong about the absence of the 

dependence, so we need a mechanism to discover if a dependence truly exists and to 

recover if so. To discover if a dependence exists, the processor examines the destination 

address of each completing store that is earlier in program order than the given load. If a 

dependence that should have been enforced occurs, the processor uses the speculative 

restart mechanism to redo the load and the following instructions. (We will see how this 

type of address speculation can be supported with instruction set extensions in the next 

chapter.)  
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2 Only a small number of memory references can be disambiguated per clock cycle.  

3 The number of the load/store buffers determines how much earlier or later in the 

instruction stream a load or store may be moved.  

 

Both the number of simultaneous disambiguations and the number of the load/ store 

buffers will affect the clock cycle time.  

 
11Q. Write various limitation on ILP for Realizable Processors. 
 
3.9 Limitations on ILP for Realizable Processors  
The performance of processors ambitious levels of hardware support equal to or better 

than what is likely in the next five years. In particular we assume the following fixed 

attributes:  

1. Up to 64 instruction issues per clock with no issue restrictions. As we discuss 

later, the practical implications of very wide issue widths on clock rate, logic 

complexity, and power may be the most important limitation on exploiting ILP.  

2. A tournament predictor with 1K entries and a 16-entry return predictor. This 

predictor is fairly comparable to the best predictors in 2000; the predictor is not a 

primary bottleneck.  

3. Perfect disambiguation of memory references done dynamically—this is 

ambitious but perhaps attainable for small window sizes (and hence small issue 

rates and load/store buffers) or through a memory dependence predictor.  

4. Register renaming with 64 additional integer and 64 additional FP 

registers,exceeding largest number available on any processor in 2001 (41 and 41 

in the Alpha 21264), but probably easily reachable within two or three years.  

 

Figures 3.45 and 3.46 show the result for this configuration as we vary the window size.  

Figure 3.45 shows the parallelism versus window size. The most startling observation 

is that with the realistic processor constraints listed above, the effect of the window size 

for the integer programs is not so severe as for FP programs. This result points to the key 

difference between these two types of programs. The availability of loop-level 

parallelism in two of the FP programs means that the amount of ILP that can be exploited 
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is higher, but that for integer programs other factors—such as branch prediction, register 

renaming, and less parallelism to start with—are all important limitations. This 

observation is critical, because of the increased emphasis on integer performance in the 

last few years. As we will see in the next section, for a realistic processor in 2000, the 

actual performance levels are much lower than those shown in Figure 3.45.  
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Beyond the limits of this study  
limitations are two types that arise even for the perfect speculative processor and 

limitations that arise for one or more realistic models. Of course, all the limitations in the 

first class apply to the second. The most important limitations that apply even to the 

perfect model are:  

1 WAR and WAW hazards through memory: the study eliminated WAW and WAR 

hazards through register renaming, but not in memory usage. Although, at first glance it 

might appear that such circumstances are rare (especially WAW hazards), they arise due 

to the allocation of stack frames. A called procedure reuses the memory locations of a 

previous procedure on the stack and this can lead to WAW and WAR hazards that are 

unnecessarily limiting. Austin and Sohi’s 1992 paper examines this issue.  

2 Unnecessary dependences: with infinite numbers of registers, all but true register 

data dependences are removed. There are, however, dependences arising from either 

recurrences or code generation conventions that introduce unnecessary true data 

dependences. One example of these is the dependence on the control variable in a simple 

do-loop: since the control variable is incremented on every loop iteration, the loop 

contains at least one dependence. As we show in the next chapter, loop unrolling and 

aggressive algebraic optimization can remove such dependent computation. Wall’s study 

includes a limited amount of such optimizations, but applying them more aggressively 

could lead to increased amounts of ILP. In addition, certain code generation conventions 

introduce unneeded dependences, in particular the use of return address registers and a 

register for the stack pointer (which is incremented and decremented in the call/return 

sequence). Wall removes the effect of the return address register, but the use of a stack 

pointer in the linkage convention can cause “unnecessary” dependences. Postiff, Greene, 

Tyson, and Mudge explored the advantages of removing this constraint in a 1999 paper.  

3 Overcoming the data flow limit: a recent proposed idea to boost ILP, which goes 

beyond the capability of the study above, is value prediction. Value prediction consists of 

predicting data values and speculating on the prediction. There are two obvious uses of 

this scheme: predicting data values and speculating on the result and predicting address 

values for memory alias elimination. The latter affects parallelism only under less than 

perfect circumstances,  
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4 Value prediction has possibly the most potential for increasing ILP. Data value 

prediction and speculation predicts data values and uses them in destination instructions 

speculatively. Such speculation allows multiple dependent instructions to be executed in 

the same clock cycle, thus increasing the potential ILP. To be effective, however, data 

values must be predicted very accurately, since they will be used by consuming 

instructions, just as if they were correctly computed. Thus, inaccurate prediction will lead 

to incorrect speculation and recovery, just as when branches are mispredicted.  

One insight that gives some hope is that certain instructions produce the same values 

with high frequency, so it may be possible to selectively predict values for certain 

instructions with high accuracy. Obviously, perfect data value prediction would lead to 

infinite parallelism, since every value of every instruction could be predicted a priori.  

Thus, studying the effect of value prediction in true limit studies is difficult and has not 

yet been done. Several studies have examined the role of value prediction in exploiting 

ILP in more realistic processors (e.g., Lipasti, Wilkerson, and Shen in 1996). The extent 

to which general value prediction will be used in real processors remains unclear at the 

present.  

For a less than perfect processor, there are several ideas, which have been proposed, 

that could expose more ILP. We mention the two most important here:  

1 Address value prediction and speculation predicts memory address values and 

speculates by reordering loads and stores. This technique eliminates the need to compute 

effective addresses in-order to determine whether memory references can be reordered, 

and could provide better aliasing analysis than any practical scheme. Because we need 

not actually predict data values, but only if effective addresses are identical, this type of 

prediction can be accomplished by simpler techniques. Recent processors include limited 

versions of this technique and it can be expected that future implementations of address 

value prediction may yield an approximation to perfect alias analysis, allowing 

processors to eliminate this limit to exploiting ILP.  

2 Speculating on multiple paths: this idea was discussed by Lam and Wilson in 

1992 and explored in the study covered in this section. By speculating on multiple paths, 

the cost of incorrect recovery is reduced and more parallelism can be uncovered. It only 

makes sense to evaluate this scheme for a limited number of branches, because the 
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hardware resources required grow exponentially. Wall’s 1993 study provides data for 

speculating in both directions on up to eight branches. Whether such schemes ever 

become practical, or whether it will always be better to devote the equivalent silicon area 

to better branch predictors remains to be seen. In Chapter 8, we discuss thread-level 

parallelism and the use of speculative threads.  

 

It is critical to understand that none of the limits in this section are fundamental in the 

sense that overcoming them requires a change in the laws of physics!  

Instead, they are practical limitations that imply the existence of some formidable barriers 

to exploiting additional ILP. These limitations–whether they be window size, alias 

detection, or branch prediction–represent challenges for designers and researchers to 

overcome! As we discuss in the concluding remarks, there are a variety of other practical 

issues that may actually be the more serious limits to exploiting ILP in future processors.  
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