
Solving Problems by Searching AI-Unit II

A.Aslesha Lakshmi
Asst. Prof, CSE, VNRVJIET

Artificial intelligence

CHAPTER – 3 Solving Problems by Searching

Problem solving agents decide what to do by finding sequences of actions that lead to desirable

states.

Uninformed algorithms give no information about the problem other than its definition.

Intelligent agents maximize their performance measure by adopting a goal and aiming at

satisfying it.

Goal formulation based on the current situation and the agent’s performance is the first step in

problem solving.

Problem formulation is the process of deciding what actions and states to consider given a goal.

An agent with several immediate options of unknown value can decide what to do by first

examining different possible sequences of actions that lead to states of known value and then

choosing the best sequence. This process of looking for such a sequence is called search.

A search algorithm takes a problem as input and returns a solution in the form of an action

sequence. Once a solution is found, the actions it recommends actions that can be carried out.

This is called the execution phase.

Problem solving agent:

This figure assumes that environment is static, observable, discrete and deterministic.

Problem can be defined by four components:

a) Initial state

Solving Problems by Searching AI-Unit II

A.Aslesha Lakshmi
Asst. Prof, CSE, VNRVJIET

b) Possible actions available to the agent: using successor function

Given a particular state x, SUCCESSOR-FN(x) returns a set if <action, successor> ordered pairs.

 Initial state and successor function defines state space of the problem (set of all states reachable

from initial state). The state space forms a graph in which the nodes are states and the arcs

between nodes are actions. A path in the state space is sequence of states connected by sequence

of actions.

c) Goal test determines whether a given state is a goal state

d) Path cost assigns numeric cost to each path (sum of costs of individual actions along the

path)

Step cost of taking action a to go from x to y: c(x, a, y)

A solution to a problem is a path from the initial state to a goal state. Solution quality is

measured by path cost function and an optimal solution has lowest path cost among all solutions.

Abstraction – process of removing detail from representation.

Example problems:

1. Toy problem –

Vacuum cleaner:

states initial state successor function goal test path cost

2. Real world problem –

Travelling sales person problem

Searching for solutions:

Search techniques use explicit search tree that is generated by initial state and successor function

that together define the state space. Root of search tree is search node corresponding to initial

state. The steps to be followed are:

a) Check whether it is a goal state.

b) If it is not the goal state, expand current state by applying successor function to current

state thereby generating new set of states.

c) Continue choosing, testing and expanding until either a solution is found or there are no

more states to be expanded. Choice of which state to expand depends on search strategy.

Solving Problems by Searching AI-Unit II

A.Aslesha Lakshmi
Asst. Prof, CSE, VNRVJIET

Node is a book keeping data structure with five components:

a) state – state in state space to which node corresponds

b) parent_node – node in search tree that generated this node

c) action – action applied to parent to generate the node

d) path_cost – cost denoted by g(n) from initial state to node indicated by parent pointers

e) depth – number of steps along the path from the initial state

Collection of nodes that have been generated but not yet expanded is called fringe. Each

element of fringe is called leaf node (no successors)

Measuring problem solving performance –

a) Completeness: does a solution exist? b) Optimality: is this an optimal solution?

c) Time complexity: how long does it take to find a solution?

d) Space complexity: amount of memory needed to perform a search?

General tree search algorithm-

Solving Problems by Searching AI-Unit II

A.Aslesha Lakshmi
Asst. Prof, CSE, VNRVJIET

In AI, graph is represented implicitly by initial state and successor function and is frequently

finite; complexity is expressed in three quantities-

B – Branching factor or maximum number of successors of any node; D – Depth of

shallowest goal node; m- Maximum length of any path in state space

For finding effectiveness of search algorithm, use

a) Search cost – depends on time complexity

b) Total cost – combines search cost and path cost of solution found

Uninformed search strategies (also called blind search) –

No additional information about states beyond that provided in the problem definition.

Breadth first search: Root node is expanded first, and then all the successors of root node are

expanded next and so on.

a) Nodes visited first will be expanded first using FIFO approach

b) FIFO puts all newly generated successors at the end of queue which means shallow nodes are

expanded first before deeper nodes.

Depth first search: Expands deepest node in current fringe of search tree, search proceeds

immediately to the deepest level of search tree where nodes have no successors. As those

nodes are expanded they are dropped from the fringe, then the search backs up to the next

shallowest node. This is implemented with LIFO queue also known as stack.

Backtracking search: uses less memory compared to DFS. Only one successor is generated

at a time rather than all successors, each partially node expanded node remembers which

successor to generate next.

Drawback of DFS - gets stuck going down a very long (or even infinite) path when a

different choice would lead to a solution near the root of the search tree.

Solving Problems by Searching AI-Unit II

A.Aslesha Lakshmi
Asst. Prof, CSE, VNRVJIET

Solving Problems by Searching AI-Unit II

A.Aslesha Lakshmi
Asst. Prof, CSE, VNRVJIET

CHAPTER – 4 Informed Search and Exploration

Informed search strategy uses problem specific knowledge thus finding solution more efficiently.

Best first search – node is selected for expansion based on evaluation function f(n).Node with

lowest evaluation is selected for expansion. This is implemented via a priority queue. Choose a

node that appears to be best according to evaluation function.

Key component of best first search algorithm is heuristic function denoted by h(n).

h(n) – estimated cost of cheapest path from node n to goal node.

2 ways to use heuristic information –

a) Greedy best first search : tries to expand node that is closest to goal , evaluates nodes by

using heuristic function f(n) = h(n)

Algorithm is called greedy because at each step it tries to get close to the goal as it can.

Resembles DFS as it prefers to allow single path all the way to the goal but will back up

when it hits a dead end.

Disadvantage – not optimal and incomplete.

Solving Problems by Searching AI-Unit II

A.Aslesha Lakshmi
Asst. Prof, CSE, VNRVJIET

b) A* search – evaluates nodes by combining g(n) and h(n)

g(n) – cost from start node to node n

h(n) – cost to get from node n to goal.

f(n) = g(n) + h(n) where f(n) is the estimated cost of the cheapest solution through n.

A* is optimal if h(n) is an admissible heuristic provided h(n) never over estimates the

cost to reach the goal.

Solving Problems by Searching AI-Unit II

A.Aslesha Lakshmi
Asst. Prof, CSE, VNRVJIET

CHAPTER – 6 Adversarial Search

Multi agent environments – agent has to consider actions of other agents

Co – operative environment: taxi driving Competitive environment: playing chess

Unpredictability in competitive multi agent environment gives rise to adversarial search

problems known as games. Impact of each agent is significant on the others. In AI, games are

deterministic, turn taking, two players, zero sum games of perfect information whose actions

must alternate and in which the utility value at end of game are equal and opposite.

Pruning allows us to ignore portions of search tree that make no difference to the final choice.

Heuristic evaluation functions allow approximating the true utility of a state without doing a

complete search.

Optimal decisions in games –

A game can be defined as a kind of search problem with the following components –

a) Initial state b) Successor function c) Terminal test d) Utility function

Given a game tree, the optimal strategy can be determined by examining the minimax value of

each node which is written as MINIMAX – VALUE (n). The minimax value of a node is the

utility (for MAX) of being in the corresponding state assuming that both players play optimally

from there to the end of the game.

MAX will prefer to move to a state of maximum value whereas MIN prefers a state of minimum

value.

Minimax algorithm –

Computes minimax decision from current state. It uses a simple recursive computation of

the minimax values of each successor state directly implementing the defining equations.

The recursion proceeds all the way down to the leaves of the tree and then the minimax

values are backed up through the tree as the recursion unwinds.

Solving Problems by Searching AI-Unit II

A.Aslesha Lakshmi
Asst. Prof, CSE, VNRVJIET

Optimal decisions in multiplayer games –

Extending the idea of minimax to multiplayer games. First replace the single value for

each node with a vector of values. For terminal states, this vector gives the utility of the

state from each player’s view point. This can be achieved by having the utility function

return a vector of utilities.

Solving Problems by Searching AI-Unit II

A.Aslesha Lakshmi
Asst. Prof, CSE, VNRVJIET

Alpha beta pruning –

Compute correct minimax decision by pruning which eliminates large parts of tree from

consideration. When applied to a standard minimax tree, it returns the same as minimax

would but prunes away branches that cannot possibly influence the final decision.

Technique applied is DFS and can be applied to tress of any depth.

Alpha beta pruning gets its name from 2 parameters that describe bounds on the backed – up

values that appear anywhere along the path:

Alpha – value of best (highest value) choice found so far at any choice point along path for MAX

Beta – value of best (lowest value) choice found so far at any choice point along path for MIN

Alpha – beta search updates the value of alpha and beta as it goes along and prunes the

remaining branches at a node as soon as the value of the current node is known to be worse than

current alpha or beta value for max or min respectively.

Disadvantage – alpha – beta still has to search all the way to terminal states for at least a portion

of the search space.

In games, repeated states occur frequently because of transposition – different permutations of

the move sequence that end up in the same position.

Solving Problems by Searching AI-Unit II

A.Aslesha Lakshmi
Asst. Prof, CSE, VNRVJIET

Imperfect Real Time Decisions –

Minimax algorithm generates entire game search space whereas alpha beta algorithm allows us

to prune large parts of it. Hence programs should cut off the search earlier and apply a heuristic

evaluation function to states in the search turning non terminal nodes into terminal leaves. This

alters alpha – beta pruning in 2 ways: utility function is replaced by a heuristic evaluation

function called EVAL which gives an estimate of the position’s utility and the terminal test is

replaced by a cut-off test that decides when to apply EVAL.

 Evaluation functions:

An evaluation that returns an estimate of the expected utility of the game from a given

position. First, the evaluation function should order the terminal states in the same way as the

true utility function. Second, the computation must not take too long. Third, for non terminal

states, the evaluation function should be strongly correlated with the chances of winning.

Most evaluation functions work by calculating various features of the state. These features

taken together define various categories or equivalence classes of states – the states in each

category have the same values for all the features.

a) Expected value b

b) Material value

c) Weighted linear function

 Cutting off search:

Here we modify alpha – beta search so that it will call the heuristic EVAL function when it is

appropriate to cut off the search.

 If CUTOFF-TEST (state, depth) then return EVAL (state)

