
ACA CHAPTER I PSV

ADVANCED COMPUTER ARCHITECTURE

1Q. Explain the fundamentals of computer Design

1.1 Fundamentals of Computer Design

Computer technology has made incredible progress in the roughly from last 55 years.

This rapid rate of improvement has come both from advances in the technology used to

build computers and from innovation in computer design. During the first 25 years of

electronic computers, both forces made a major contribution; but beginning in about

1970, computer designers became largely dependent upon integrated circuit technology.

During the 1970s, performance continued to improve at about 25% to 30% per year for

the mainframes and minicomputers that dominated the industry.

The late 1970s after invention of microprocessor the growth roughly increased 35% per

year in performance. This growth rate, combined with the cost advantages of a mass-

produced microprocessor, led to an increasing fraction of the computer business. In

addition, two significant changes are observed in computer industry.

• First, the virtual elimination of assembly language programming reduced the need

for object-code compatibility.

• Second, the creation of standardized, vendor-independent operating systems, such

as UNIX and its clone, Linux, lowered the cost and risk of bringing out a new

architecture.

These changes made it possible to successfully develop a new set of architectures, called

RISC (Reduced Instruction Set Computer) architectures. In the early 1980s. The RISC-

based machines focused the attention of designers on two critical performance

techniques, the exploitation of instruction-level parallelism and the use of caches. The

combination of architectural and organizational enhancements has led to 20 years of

sustained growth in performance at an annual rate of over 50%. Figure 1.1 shows the

effect of this difference in performance growth rates.

The effect of this dramatic growth rate has been twofold.

• First, it has significantly enhanced the capability available to computer users. For

many applications, the highest performance microprocessors of today outperform

the supercomputer of less than 10 years ago.

• Second, this dramatic rate of improvement has led to the dominance of micro-

1

ACA CHAPTER I PSV

processor-based computers across the entire range of the computer design.

FIGURE 1.1 Growth in microprocessor performance since the mid 1980s has been

substantially higher than in earlier years as shown by plotting SPECint

performance.

2Q. Explain various Technology Trends in Computer Industry
1.3 Technology Trends

The changes in the computer applications space over the last decade have dramatically

changed the metrics. Desktop computers remain focused on optimizing cost-performance

as measured by a single user, servers focus on availability, scalability, and throughput

cost-performance, and embedded computers are driven by price and often power issues.

If an instruction set architecture is to be successful, it must be designed to survive rapid

changes in computer technology. An architect must plan for technology changes that can

increase the lifetime of a computer.

The following Four implementation technologies changed the computer industry:

2

ACA CHAPTER I PSV

Integrated circuit logic technology—Transistor density increases by about 35% per year,

and die size increases 10% to 20% per year. The combined effect is a growth rate in

transistor count on a chip of about 55% per year.

Semiconductor DRAM : Density increases by between 40% and 60% per year and Cycle

time has improved very slowly, decreasing by about one-third in 10 years. Bandwidth per

chip increases about twice as fast as latency decreases. In addition, changes to the DRAM

interface have also improved the bandwidth.

Magnetic disk technology: it is improving more than 100% per year. Prior to 1990,

density increased by about 30% per year, doubling in three years. It appears that disk

technology will continue the faster density growth rate for some time to come. Access

time has improved by one-third in 10 years.

Network technology—Network performance depends both on the performance of

switches and on the performance of the transmission system, both latency and bandwidth

can be improved, though recently bandwidth has been the primary focus. For many years,

networking technology appeared to improve slowly: for example, it took about 10 years

for Ethernet technology to move from 10 Mb to 100 Mb. The increased importance of

networking has led to a faster rate of progress with 1 Gb Ethernet becoming available

about five years after 100 Mb.

These rapidly changing technologies impact the design of a microprocessor that may,

with speed and technology enhancements, have a lifetime of five or more years.

Scaling of Transistor Performance, Wires, and Power in Integrated Circuits

Integrated circuit processes are characterized by the feature size, which is decreased from

10 microns in 1971 to 0.18 microns in 2001. Since a transistor is a 2-dimensional object,

the density of transistors increases quadratically with a linear decrease in feature size.

The increase in transistor performance, this combination of scaling factors leads to a

complex interrelationship between transistor performance and process feature size.

3

ACA CHAPTER I PSV

First approximation, transistor performance improves linearly with decreasing feature

size.

In the early days of microprocessors, the higher rate of improvement in density was used

to quickly move from 4-bit, to 8bit, to 16-bit, to 32-bit microprocessors. More recently,

density improvements have supported the introduction of 64-bit microprocessors as well

as many of the innovations in pipelining and caches.

The signal delay for a wire increases in proportion to the product of its resistance and

capacitance. As feature size shrinks wires get shorter, but the resistance and capacitance

per unit length gets worse. Since both resistance and capacitance depend on detailed

aspects of the process, the geometry of a wire, the loading on a wire, and even the

adjacency to other structures. In the past few years, wire delay has become a major

design limitation for large integrated circuits and is often more critical than transistor

switching delay. Larger and larger fractions of the clock cycle have been consumed by

the propagation delay of signals on wires. In 2001, the Pentium 4 broke new ground by

allocating two stages of its 20+ stage pipeline just for propagating signals across the chip.

Power also provides challenges as devices are scaled. For modern CMOS

microprocessors, the dominant energy consumption is in switching transistors. The

energy required per transistor is proportional to the product of the load capacitance of the

transistor, the frequency of switching, and the square of the voltage. As we move from

one process to the next, the increase in the number of transistors switching and the

frequency with which they switch, dominates the decrease in load capacitance and

voltage, leading to an overall growth in power consumption.

3Q. What is Cost and Price. Explain the impact of Time, volume and
commodification on Cost and Price

1.4 Cost, Price and their Trends

In the past 15 years, the use of technology improvements to achieve lower cost, as well as

increased performance, has been a major theme in the computer industry.

4

ACA CHAPTER I PSV

• Price is what you sell a finished good for,

• Cost is the amount spent to produce it, including overhead.

The Impact of Time, Volume, Commodification, and Packaging

The cost of a manufactured computer component decreases over time even without major

improvements in the basic implementation technology. The underlying principle that

drives costs down is the learning curve manufacturing costs decrease over time. As an

example of the learning curve in action, the price per megabyte of DRAM drops over the

long term by 40% per year. Figure 1.5 plots the price of a new DRAM chip over its

lifetime.

The Microprocessor prices also drop over time, but because they are less standardized

than DRAMs, the relationship between price and cost is more complex. In a period of

significant competition, price tends to track cost closely. Figure 1.6 shows processor

price trends for the Pentium III.

5

ACA CHAPTER I PSV

The Volume is a second key factor in determining cost. Increasing volumes affect cost in

several ways.

• First, they decrease the time needed to get down the learning curve, which is

partly proportional to the number of systems (or chips) manufactured.

• Second, volume decreases cost, since it increases purchasing and manufacturing

efficiency.

As a rule of thumb, some designers have estimated that cost decreases about 10% for

each doubling of volume.

The Commodities are products that are sold by multiple vendors in large volumes and are

essentially identical. Virtually all the products sold on the shelves of grocery stores are

commodities, as are standard DRAMs, disks, monitors, and keyboards. In the past 10

years, much of the low end of the computer business has become a commodity business

focused on building IBM-compatible PCs. There are a variety of vendors that ship

virtually identical products and are highly competitive. Of course, this competition

6

ACA CHAPTER I PSV

decreases the gap between cost and selling price, but it also decreases cost.

4. How to calculate cost of an Integrated Circuit and explain how cost
becomes price by taking an example.
Cost of an Integrated Circuit:

The cost of packaged integrated circuit is

Cost of die + Cost of testing die + Cost of packaging and final testCost of integrated circuit=
Final test yield

The number of good chips per wafer requires first learning how many dies fit on a wafer

and then learning how to predict the percentage of those that will work. From there it is

simple to predict cost:

Cost of waferCost of die=
Dies per wafer × Die yield

The number of dies per wafer is basically the area of the wafer divided by the area of the

die. It can be more accurately estimated by

2×(Wafer diameter/2) × Wafer diameterDies per wafer=
Die area 2 x Die Area

π π
−

The first term is the ratio of wafer area (πr

2
) to die area. The second compensates for the

“square peg in a round hole” problem rectangular dies near the periphery of round

wafers. Dividing the circumference (πd) by the diagonal of a square die is approximately

the number of dies along the edge. For example, a wafer 30 cm (≈ 12 inch) in diameter

produces π× 225 – (π × 30 ⁄ 1.41) = 640 1-cm dies.

7

ACA CHAPTER I PSV

Distribution of Cost in a System: An Example

Figure 1.9 shows the approximate cost breakdown for a $1,000 PC in 2001. Although the

costs of some parts of this machine can be expected to drop over time, other components,

such as the packaging and power supply, have little room for improvement.

System Subsystem Fraction of total

Cabinet Sheet metal, plastic 2%

 Power supply, fans 2%

 Cables, nuts, bolts 1%

 Shipping box, manuals 1%

 Subtotal 6%

Processor board Processor 23%

 DRAM (128 MB) 5%

 Video card 5%

 Motherboard with basic I/O support, and

networking

5%

 Subtotal 38%

I/O devices Keyboard and mouse Monitor 3% 20%

 Hard disk (20 GB) DVD drive 9% 6%

 Subtotal 37%

Software OS + Basic Office Suite 20%

Cost Versus Price—Why They Differ and By How Much

Cost goes through a number of changes before it becomes price, and the computer

designer should understand how a design decision will affect the potential selling price.

For example, changing cost by $1000 may change price by $3000 to $4000.

8

ACA CHAPTER I PSV

The relationship between price and volume can increase the impact of changes in cost,

especially at the low end of the market. Typically, fewer computers are sold as the price

increases. Furthermore, as volume decreases, costs rise, leading to further increases in

price.

Direct costs refer to the costs directly related to making a product. These include labor

costs, purchasing components, scrap (the leftover from yield), and warranty. Direct cost

typically adds 10% to 30% to component cost.

The next addition is called the gross margin, the company’s overhead that cannot be

billed directly to one product. This can be thought of as indirect cost. It includes the

company’s research and development (R&D), marketing, sales, manufacturing equipment

maintenance, building rental, cost of financing, pretax profits, and taxes. When the

component costs are added to the direct cost and gross margin,

Average selling price is the money that comes directly to the company for each product

sold. The gross margin is typically 10% to 45% of the average selling price, depending

on the uniqueness of the product. Manufacturers of low-end PCs have lower gross

margins for several reasons. First, their R&D expenses are lower. Second, their cost of

sales is lower, since they use indirect distribution by mail, the Internet, phone order, or

9

ACA CHAPTER I PSV

retail store) rather than salespeople. Third, because their products are less unique,

competition is more intense, thus forcing lower prices and often lower profits, which in

turn lead to a lower gross margin.

List price and average selling price are not the same. One reason for this is that

companies offer volume discounts, lowering the average selling price. As personal

computers became commodity products, the retail mark-ups have dropped significantly,

so list price and average selling price have closed.

5Q. How to measure and report the performance of the systems

1.5 Measuring and Reporting Performance

The computer user is interested in reducing response time(the time between the start and

the completion of an event) also referred to as execution time. The manager of a large

data processing center may be interested in increasing throughput(the total amount of

work done in a given time).

In comparing design alternatives, we often want to relate the performance of two

different machines, say X and Y. The phrase “X is faster than Y” is used here to mean

that the response time or execution time is lower on X than on Y for the given task. In

particular, “X is n times faster than Y” will mean

y

x

ExecutionTime
n

ExecutionTime
=

Since execution time is the reciprocal of performance, the following relationship holds:

1

1
y y x

x y

x

ExecutionTime Performance Performancen
ExecutionTime Performance

Performance

= = =

The phrase “the throughput of X is 1.3 times higher than Y” signifies here that the

number of tasks completed per unit time on machine X is 1.3 times the number

completed on Y.

10

ACA CHAPTER I PSV

Even execution time can be defined in different ways depending on what we count. The

most straightforward definition of time is called wall-clock time, response time, or

elapsed time, which is the latency to complete a task, including disk accesses, memory

accesses, input/output activities, operating system overhead

Choosing Programs to Evaluate Performance

A computer user who runs the same programs day in and day out would be the perfect

candidate to evaluate a new computer. To evaluate a new system the user would simply

compare the execution time of her workload—the mixture of programs and operating

system commands that users run on a machine.

 There are five levels of programs used in such circumstances, listed below in decreasing

order of accuracy of prediction.

1. Real applications— Although the buyer may not know what fraction of time is spent

on these programs, she knows that some users will run them to solve real problems.

Examples are compilers for C, text-processing software like Word, and other applications

like Photoshop. Real applications have input, output, and options that a user can select

when running the program. There is one major downside to using real applications as

benchmarks: Real applications often encounter portability problems arising from

dependences on the operating system or compiler. Enhancing portability often means

modifying the source and sometimes eliminating some important activity, such as

interactive graphics, which tends to be more system-dependent.

2. Modified (or scripted) applications—In many cases, real applications are used as the

building block for a benchmark either with modifications to the application or with a

script that acts as stimulus to the application. Applications are modified for two primary

reasons: to enhance portability or to focus on one particular aspect of system

performance. For example, to create a CPU-oriented benchmark, I/O may be removed or

restructured to minimize its impact on execution time. Scripts are used to reproduce

interactive behavior, which might occur on a desktop system, or to simulate complex

multiuser interaction, which occurs in a server system.

11

ACA CHAPTER I PSV

3. Kernels—Several attempts have been made to extract small, key pieces from real

programs and use them to evaluate performance. Livermore Loops and Linpack are the

best known examples. Unlike real programs, no user would run kernel programs, for they

exist solely to evaluate performance. Kernels are best used to isolate performance of

individual features of a machine to explain the reasons for differences in performance of

real programs.

4. Toy benchmarks—Toy benchmarks are typically between 10 and 100 lines of code and

produce a result the user already knows before running the toy program. Programs like

Sieve of Eratosthenes, Puzzle, and Quicksort are popular because they are small, easy to

type, and run on almost any computer. The best use of such programs is beginning

programming assignments.

5. Synthetic benchmarks—Similar in philosophy to kernels, synthetic benchmarks try to

match the average frequency of operations and operands of a large set of programs.

Whetstone and Dhrystone are the most popular synthetic benchmarks.

6Q. What is Benchmark. Explain various Benchmark suites.

Benchmark Suites

Recently, it has become popular to put together collections of benchmarks to try to

measure the performance of processors with a variety of applications. One of the most

successful attempts to create standardized benchmark application suites has been the

SPEC (Standard Performance Evaluation Corporation), which had its roots in the late

1980s efforts to deliver better benchmarks for workstations. Just as the computer

industry has evolved over time, so has the need for different benchmark suites, and

there are now SPEC benchmarks to cover different application classes, as well as other

suites based on the SPEC model. Which is shown in figure 1.11

12

ACA CHAPTER I PSV

Desktop Benchmarks

Desktop benchmarks divide into two broad classes: CPU intensive benchmarks and

graphics intensive benchmarks intensive CPU activity). SPEC originally created a

benchmark set focusing on CPU performance (initially called SPEC89), which has

evolved into its fourth generation: SPEC CPU2000, which follows SPEC95, and

SPEC92. (Figure 1.30 on page 64 discusses the evolution of the benchmarks.) SPEC

CPU2000, summarized in Figure 1.12, consists of a set of eleven integer benchmarks

(CINT2000) and fourteen floating point benchmarks (CFP2000).

13

ACA CHAPTER I PSV

Although SPEC CPU2000 is aimed at CPU performance, two different types of graphics

benchmarks were created by SPEC: SPEC viewperf is used for benchmarking systems

supporting the OpenGL graphics library, while SPECapc consists of applications that

make extensive use of graphics. SPECviewperf measures the 3D rendering performance

of systems running under OpenGL using a 3-D model and a series of OpenGL calls that

transform the model. SPECapc consists of runs of three large applications:

1. Pro/Engineer: a solid modeling application that does extensive 3-D rendering. The

input script is a model of a photocopying machine consisting of 370,000 triangles.

2. SolidWorks 99: a 3-D CAD/CAM design tool running a series of five tests varying

from I/O intensive to CPU intensive. The largetest input is a model of an assembly line

consisting of 276,000 triangles.

3. Unigraphics V15: The benchmark is based on an aircraft model and covers a wide

spectrum of Unigraphics functionality, including assembly, drafting, numeric control

machining, solid modeling, and optimization. The inputs are all part of an aircraft design.

Server Benchmarks

Just as servers have multiple functions, so there are multiple types of benchmarks. The

simplest benchmark is perhaps a CPU throughput oriented benchmark. SPEC CPU2000

uses the SPEC CPU benchmarks to construct a simple throughput benchmark where the

processing rate of a multiprocessor can be measured by running multiple copies (usually

as many as there are CPUs) of each SPEC CPU benchmark and converting the CPU time

into a rate. This leads to a measurement called the SPECRate. Other than SPECRate,

most server applications and benchmarks have significant I/O activity arising from either

disk or network traffic, including benchmarks for file server systems, for web servers,

and for database and transaction processing systems. SPEC offers both a file server

benchmark (SPECSFS) and a web server benchmark (SPECWeb). SPECSFS (see

http://www.spec.org/osg/sfs93/) is a benchmark for measuring NFS (Network File

System) performance using a script of file server requests; it tests the performance of the

I/O system (both disk and network I/O) as well as the CPU. SPECSFS is a throughput

oriented benchmark but with important response time requirements.

14

ACA CHAPTER I PSV

Transaction processing benchmarks measure the ability of a system to handle

transactions, which consist of database accesses and updates. All the TPC benchmarks

measure performance in transactions per second. In addition, they include a response-

time requirement, so that throughput performance is measured only when the response

time limit is met. To model real-world systems, higher transaction rates are also

associated with larger systems, both in terms of users and the data base that the

transactions are applied to. Finally, the system cost for a benchmark system must also be

included, allowing accurate comparisons of cost-performance.

Embedded Benchmarks

Benchmarks for embedded computing systems are in a far more nascent state than those

for either desktop or server environments. In fact, many manufacturers quote Dhrystone

performance, a benchmark that was criticized and given up by desktop systems more than

10 years ago! As mentioned earlier, the enormous variety in embedded applications, as

well as differences in performance requirements (hard real-time, soft real-time, and

overall cost-performance), make the use of a single set of benchmarks unrealistic. In

practice, many designers of embedded systems devise benchmarks that reflect their

application, either as kernels or as stand-alone versions of the entire application. For

those embedded applications that can be characterized well by kernel performance, the

best standardized set of benchmarks appears to be a new benchmark set: the EDN

Embedded Microprocessor Benchmark Consortium (or EEMBC–pronounced embassy).

The EEMBC benchmarks fall into five classes: automotive/industrial, consumer,

networking, office automation, and telecommunications Figure 1.13 shows the five

different application classes, which include 34 benchmarks.

15

ACA CHAPTER I PSV

7Q. What is Amdahl’s Law. Explain with example.

1.6. Quantitative Principles of Computer Design

The most important and pervasive principle of computer design is to make the common

case fast In applying this simple principle, we have to decide what the frequent case is

and how much performance can be improved by making that case faster. A fundamental

law, called Amdahl’s Law, can be used to quantify this principle.

Amdahl’s Law

The performance gain that can be obtained by improving some portion of a computer can

be calculated using Amdahl’s Law. Amdahl’s Law states that the performance

improvement to be gained from using some faster mode of execution is limited by the

fraction of the time the faster mode can be used. Amdahl’s Law defines the speedup that

can be gained by using a particular feature.

Speedup is the Ratio

Performance for entire task using enhancement when possibleSpeedup=
Performance for entire task without using enhancement

Alternatively,

Execution Time for entire task without using enhancement Speedup=
Execution Time for entire task using enhancement when possible

Speedup tells us how much faster a task will run using the machine with the enhancement

as opposed to the original machine. Amdahl’s Law gives us a quick way to find the

speedup from some enhancement, which depends on two factors:

1. The fraction of the computation time in the original machine that can be converted to

take advantage of the enhancement—For example, if 20 seconds of the execution time of

a program that takes 60 seconds in total can use an enhancement, the fraction is 20/60.

This value, which we will call Fractionenhanced, is always less than or equal to 1.

2. The improvement gained by the enhanced execution mode; that is, how much faster the

task would run if the enhanced mode were used for the entire program— This value is

16

ACA CHAPTER I PSV

the time of the original mode over the time of the enhanced mode: If the enhanced mode

takes 2 seconds for some portion of the program that can completely use the mode, while

the original mode took 5 seconds for the same portion, the improvement is 5/2. We will

call this value, which is always greater than 1, Speedupenhanced.

The execution time using the original machine with the enhanced mode will be the time

spent using the unenhanced portion of the machine plus the time spent using the

enhancement:

()New oldExecution time Execution time 1 Enhanced
Enhanced

Enhanced

FractionFraction
Speedup

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

The overall speedup is the ratio of the execution times:

()

1

1

old
Overall

New Enhanced
Enhanced

Enhanced

ExectionSpeedup
Exection FractionFraction

Speedup

= =
⎛ ⎞

− +⎜ ⎟
⎝ ⎠

Amdahl’s Law can serve as a guide to how much an enhancement will improve

performance and how to distribute resources to improve cost/performance.

The CPU Performance Equation

Essentially all computers are constructed using a clock running at a constant rate. These

discrete time events are called ticks, clock ticks, clock periods, clocks, cycles, or clock

cycles. Computer designers refer to the time of a clock period by its duration (e.g., 1 ns)

or by its rate (e.g., 1 GHz). CPU time for a program can then be expressed two ways:

CPU Time = CPU Clock Cycles Per a Program X Clock Cycle Time

Or

PrCPU Clock Cycles Per ogramCPU Time
Clock Rate

=

17

ACA CHAPTER I PSV

In addition to the number of clock cycles needed to execute a program, we can also count

the number of instructions executed—the instruction path length or instruction count

(IC). If we know the number of clock cycles and the instruction count we can calculate

the average number of clock cycles per instruction (CPI).

CPI is computed as

CPU Clock Cycles Per a Program
Instruction Count

CPI =

This allows us to use CPI in the execution time formula:

CPU time = Instruction count X Clock Cycle Time X Cycles per Instruction

Principle of Locality

locality of reference means: Programs tend to reuse data and instructions they have used

recently. A widely held rule of thumb is that a program spends 90% of its execution time

in only 10% of the code. An implication of locality is that we can predict with reasonable

accuracy what instructions and data a program will use in the near future based on its

accesses in the recent past.

Locality of reference also applies to data accesses, though not as strongly as to code

accesses. Two different types of locality have been observed. Temporal locality states

that recently accessed items are likely to be accessed in the near future. Spatial locality

says that items whose addresses are near one another tend to be referenced close together

in time.

Advantage of Parallelism

Advantage of parallelism is one of the most important methods for improving

performance. We give three brief examples, which are expounded on in later chapters.

Our first example is the use of parallelism at the system level. To improve the throughput

performance on a typical server benchmark, such as SPECWeb or TPC, multiple

processors and multiple disks can be used. The workload of handling requests can then be

18

ACA CHAPTER I PSV

spread among the CPUs or disks resulting in improved throughput. This is the reason that

scalability is viewed as a valuable asset for server applications. At the level of an

individual processor, taking advantage of parallelism among instructions is critical to

achieving high performance. This can be done to do this is through pipelining. The basic

idea behind pipelining is to overlap the execution of instructions, so as to reduce the total

time to complete a sequence of instructions. Viewed from the perspective of the CPU

performance equation, we can think of pipelining as reducing the CPI by allowing

instructions that take multiple cycles to overlap. A key insight that allows pipelining to

work is that not every instruction depends on its immediate predecessor, and thus,

executing the instructions completely or partially in parallel may be possible.

Parallelism can also be exploited at the level of detailed digital design. For example set

associative caches use multiple banks of memory that are typical searched in parallel to

find a desired item. Modern ALUs use carry-lookahead, which uses parallelism to speed

the process of computing sums from linear in the number of bits in the operands to

logarithmic.

19

