QUANTITATIVE APTITUDE TEST PAPER 4

1. The distance between the points $(3,-4)$ and $(3,3)$ is

2. The coordinates of a point which divide the join of $A(5,5)$ and $(8,5)$ in the ratio $2: 1$ are
©

$$
(5,6) \subset(7,5) \subset
$$

$(8,4) \quad \square$
$(9,6)$
3. $X Y Z$ is an equilateral triangle with vertices $X(6,-2), Y(2,-1)$ and $Z(4,-2)$. If $Z A$ is one of its medians find the length of the median.
© sqrt6 Units ${ }^{\circ}$ sqrt5 Units ${ }^{\complement}$ sqrt13 Units \cap sqrt10 Units
4. The ratio in which the line segment joining $P(3 .-4)$ and $Q(6,7)$ is divided by x axis is
(- $5: 2 \bigcirc 3: 4 \bigcirc 2: 3 \bigcirc 4: 7$
5. $\mathrm{P}(-4, \mathrm{~b})$ and $\mathrm{Q}(2, \mathrm{~b}+2)$ are 2 points and the co-ordinates of the middle point of PQ are $(-2,2)$. The value of b is

6. The slope of the line Joining $A(-4.6)$ and $B(5,3)$ is

7. The points of intersection of the circle $x 2+y 2=34$ and line $y=5$
($(2,4)(-2,4)$ C
$(3,6)(-3,6)$
C
$(3,5)(3,-5)$ C $(2,3)(-2,3)$
8. Complete the series $25,125,36,216,49$, \qquad

$$
\text { * } 200 \subset{ }_{290} \subset{ }_{335} \subset{ }_{343}
$$

9.The value of a machine depreciates at the rate @ 15% per annum. If the price of a new machine is Rs. 60,000 its value after 2 years will be
(4 Rs. 43350
Rs. 45000
Rs. 52570 C
Rs. 51750
10. 80% of $p=40 \%$ of Q and $Q=X \% P$. Then the value of x is

- 360 C 200 C 300 C 250
11.The population of a town increase by 10% every year. If it is 16093 row, its population 2 year ago was
(c) $13300 \subset 14200 \subset 14750$ C 15265

12. If $A: B$ is $2: 3$ and $B: C$ is $3: 4$ then $A: C$ is equal to

13. If the numerator of a fraction is increased by 15% and the denominator is increased by 10%, then the value of the fraction is $15 / 26$, The original fraction is

14. X varies directly as Y varies and Z varies inversely as Y varies. At a time $Y=10, X=$ 20, Z
$=5$, If y is changed to 20 then the values of Z is :

- $2.5 \bigcirc \quad 5 \bigcirc 10 \bigcirc 3$

15. If a Box containing 10 mirrors is dropped which of the following can not be the ratio of broken mirrors to unbroken mirrors.
(4 $1: 1$ C $2: 3$ ($3: 2$ ($3: 4$
16. 5 (P 's Capital $)=10(\mathrm{Q}$'s Capital $)=15$ (R's Capital) then the ratio of their capital is :

$$
6: 3: 2 \text { С } 2: 7: 9 \text { C } 8: 5: 3 \bigcirc 2: 3: 1
$$

17. The difference between a discount of 50% on Rs. 500 and two successive discounts of 45% and 5% on the same amount is

$$
\text { Rs } 15{ }^{\circ} \text { Rs } 11.25 \bigcirc \text { Rs } 10^{\circ} \text { None of These }
$$

18. A man rows upstream 10 Km . And downstream 20 Km taking 4 hrs each time. The velocity of the current is

-

2 Kmph
2.5 Kmph
$1.25 \mathrm{Kmph}{ }^{\mathrm{C}}$

1. 5 Kmph
19.A boat goes 50 Km upstream in 10 hours and a distance of 40 Km . Down stream is 9 hours. The speed of the boat in standing water is
(4.9 Kmph 「
5.2 Kmph ?
$4.5 \mathrm{Kmph}^{\complement}$
4.72 Kmph
2. A man can swim 4 Kmph in still water. If the velocity of the stream be 3 kmph the time taken by him to swim to a place 14 Km upstream and back is:
© 16 Hours ${ }^{\complement} 12$ Hours ${ }^{\top} 14$ Hours ${ }^{\complement} 10$ Hours
3. $D x y z$ is rotated about $x y$ as axis. Find the volume of the solid generated if $x y=6 \mathrm{~cm}$ and $\mathrm{yz}=10 \mathrm{~cm}$. Dxyz is a right angled D

4. I shopped in 4 shops 1 after another. In the end I had no money. In each shop I Spent Rs 2 more than 20% of what I had when I entered each shop. How much did I have in the beginning .
(* $87.81 \bigcirc 82.35 \bigcirc 80.30 \bigcirc 85.65$
5. A rides 5 km at $1 \mathrm{kmph}, 4 \mathrm{~km}$ at 2 kmph and 12 km at 6 kmph . What is his Average speed.

* 2.33 kmphr.
4.33 kmphr.
3.33 kmphr.
1.33 kmp hr.

24. Within a square ground with one side 20 m , there is a square path that is 4 m in breadth. What is the area of the park without the path.
© $144 \mathrm{~m}^{2} \mathrm{C} 400 \mathrm{~m}^{2} \mathrm{C} \quad 16 \mathrm{~m}^{2} \mathrm{C} \quad$ Not determined.
25. If $(p-q)^{2}=(x-y)^{2}$, then $x=$
(4 $\mathrm{p}-\mathrm{q}+\mathrm{y} \quad(\mathrm{y}-\mathrm{p}+\mathrm{q} \quad(\quad$ Both (a) and (b) \quad None of these
26. Rs. 13400 are invested at SI for 7 years partly at 6% interest and partly at 4% interest. If both sums yield equal linterest, find the sum invested at 6%.
(*) Rs. 5360 C
Rs. $3000{ }^{\text {C }}$
Rs. 4000
Rs. 2800
27. B reaches 10 ,minutes early travelling at 6 km per hour, whereas A reaches 10 minutes late travelling at 5 km per hour. Find the distance.
28. Fi nd the next term in the series $123,129,141,147$, \qquad
(* 171
C 162^{C}
159
148
29. A 2 digit number is divisible by 6 and not by 12 . When the digits are interchanged the number
is also divisible by 12 . The absolute value of the difference between the numbers is
(*) 18
12 C
24
36
30. A Farmer notices that the area of his farm in sq mts is equal to 2 times the square of the number of tractors he owns. If one tractor is stolen he has to sell 62 sq mts of the farm. So as to maintain the relationship. Find the number of tractors remaining.
(*) $14^{\text {C }} 15^{\text {C }} 16^{\text {C }} 17$
31. How many numbers greater than a million can be formed using digits $0,6,6,7,0,0$, 6,
and 7 ?
(410 C 420 C 360 C 800
32. At exactly midnight, a thief tries to steal a car from a garage. 2 full minutes are gone before the guard arrives at the scene and starts running after the burglar. At 12:05:00, the burglar panicks and slips. By the time he gets up, 10 seconds are gone and the guard has caught up with him. Had he not fallen, the thief would have reached a safe hideout which was at a distance of 3560 m from the museum at $12: 05: 56$ hours. What was the running speed of the security guard ?
($15.07 \mathrm{~m} / \mathrm{sec}$ 「
0.6 km / min
$12 \mathrm{~m} / \mathrm{sec}^{\mathrm{C}}$
$15 \mathrm{~m} / \mathrm{sec}$
33. X and Y enter into a partnership by investing certain capital in the ratio of $1: 3$. However, after 4 months, X alone starts managing the business and Y pays him Rs. 10,000 per month. How much profit should they make so that at the end of the year, when the profit is divided, the net incomes of both are the same for the year ?

34. Complete the series $1,3,4,13,53$, \qquad

* 690 © 670 © $65 \quad$ © 35

35. There are 5 people - A, B, C, D, E, standing in a queue. How many ways are available to form the queue such that D is not ahead of E ?

36. 5 men can dok a certain task working 10 hours a day in 1 day that requires 4 Women 2 days working 8 hours a day and 5 boys 4 days working 5 hours a day. If a contractor hires 20 men, 9 Women, and 10 boys to complete together 1000 such tasks, starting on 1st March, 2000, when will the entire work get over ?
(*) 2 nd July $\subset 29$ th June $\subset 30$ th June $\subset 4$ th August
37. X's Salary is 150% of Y's salary. Z's salary is 75 \% of Y's salary. The total of all three salaries is Rs. 325,000. How Much is Y's Salary ?
(* Rs. 100,000
R Rs. 25, 0000
C
Rs. 24, 000
Rs. 28, 000
38. If santa can walk a certain distance in 200 days when he rests 18 hours each day; how long will it take to walk twice the distance twice as fast and the rest half as long each day ? (80 days $\bigcirc 40$ days $\bigcirc 100$ days $\bigcirc 50$ days
39. An automobile has two punctured tyres. The first puncture by itself would make the tyre flat in 10 minutes. The second puncture by itself would make the tyre flat in 5 minutes. How long would it take for both punctures together to make the remaining tyre flat ?

40. $a * b=a-b$, if both 'a ' and ' b ' are positive.
$=1$ otherwise
$a @ b=a b$, if ' $a b$ ' is positive.
$=0$ otherwise
based on the data given above solve the question given below
$[4 *(-5)] @[(-2) * 2] /[(-4) @(-5)] *[2 @ 2]$

41. The square root of $(11+2 \operatorname{sqrt}(30))$ is

$$
\text { (} \quad \text { sqrt5 }+\operatorname{sqrt6} \int \quad \text { sqrt } 5+\text { sqrt3 } \int \text { sqrt } 10+\operatorname{sqrt3} \curvearrowright \quad \text { sqrt } 6+1
$$

42. An army chief wishing to draw his 17164 men in the form of a solid square found that he had 3 men more. The number of men is the last row was.
(4) 152 C
131
134
140
43. What is the ratio whose terms differ by 50 and the measure of which is $3 / 5$
(-) $80 \quad$ C $95 \quad$ ($60 \quad$ C 75
44. A bag contains Rs 300 in the form of 1 rupee, 50 paise and 25 paise coins in the ration $3: 2: 4$ The number of 25 paise coins in the bag are
(c $240 \subset 300 \subset 360 \subset 180$
45. Rs. 11250 are divided among Jay, Ajay \& Vijay so that Jay may receive one fourth as much as Ajay and Vijay together receive and Ajay one half of what Jay \& Vijay together receive. What is Jay's share.
(* Rs $6500{ }^{\circ}$ Rs $5250{ }^{\circ}$ Rs $2250{ }^{\circ}$ Rs 3750
46. X, Y, Z, enter into a partnership. X invests some money at the beginning y, invests 4 times
The amount after 8 months and Z invests 3 times the amount after 10 months. If the annual profit be Rs. 8500 then Z's share is

- 1525 C 1875 ($2000{ }^{\circ} 1500$

47. By selling 75 toys a shopkeeper gains the selling price of 25 toys. Find his gain percent.
(c 20% (25% $\quad 50 \%$ 75%
48. P \& Q enter into a partnership P invests Rs 8000 for 6 months and Q remains in the Business for 3 months. Out of the total profit Q claims $1 / 2$ of the profit. What was Q's contribution

- Rs $5750{ }^{\circ}$ Rs 15525^{\curvearrowright} Rs 8000^{\complement} Rs 16000

49. Successive discounts of 25% and 15% are equivalent to a single discount of
($42.75 \%{ }^{\circ} 40 \%$ C
36.25\%
35\%
50.If 4 cars are sold at the cost price of 6 cars the profit $\%$ will be
• 50% $\quad 331 / 3 \%$ \quad (6.67\% $\quad 32 \%$

QUANTITATIVE APTITUDE TEST PAPER 4 : EXPLANATORY ANSWERS

1. Required distance $=$ sqrt $(3-3)^{2}+\left(3-(-4)^{2}\right)$
$=\operatorname{sqrt}$ (7) ${ }^{2}$
$=7$ Units.
Hence[1]
2. The required point is
$[2 * 8+1 * 5 / 2+1,2 * 5+1 *(-3) /(2+1)]$
$=21 / 3,15 / 3$
$=(7,5)$
Hence[2]
3. A is the midpoint of $y z$,

The coordinates of A are $[2+4 / 2,-2+4 / 2,-2+2 / 2]$
$=(3,0)$
$X A=\operatorname{sqrt}(6-3)^{2}+(-2-0)^{2}$
$=$ sqrt $3^{2}+2^{2}$
$=$ sqrt $9+4=$ sqrt 13 Units Hence[3]
4. Let the ratio be $K: 1$

TK $+1 *(-4) / K+1=0$
TK $=4$
$K=4 / 7$
The ratio is $4 / 7: 1$
= 4:7
Hence [4]
5. $b+b+2 / 2=2$
$2 b+2=4$
$2 b=2$
b $=1$
Hence[1]
6. Slope $=$ y $2-y 1 / x 2-x 1$
$=3-6 / 5+4=-3 / 9=-1 / 3$
Hence[2]
7. Putting $y=5$ in $x^{2}+y^{2}=34$
$=x^{2}+25=34$
$x 2=a \backslash x= \pm 3$
points are (3,5) and ($3,-5$)
Hence[3]
8. The series is $5^{2}, 5^{3}, 6^{2}$ and so on
9. Value of Machinery after 2 years $=60000(1-15 / 100)^{2}$ $60000(115 / 100)^{2}$
= Rs 43350
Hence[1]
10. $80 / 100 \mathrm{P}=40 / 100 \mathrm{Q}=40 / 100 * \mathrm{X} / 100$
$8 / 10=4 \times / 1000$
$X=8000 / 40=200$
Hence[2]
11. Population 2 years ago $=16093 /(1+10 / 100)^{2}$
$=16093 * 10000 / 12100$
$=13300$
Hence[1]
12. $A: C=2 / 3 * 3 / 4$
$=1: 2$
Hence[4]
13. Let the fraction be x / y

New fraction $=115 \%$ of $x / 110 \%$ of $y=23 x / 22 y=15 / 26$
$x / y=(15 / 26 * 22 / 23)=330 / 598=165 / 299$
Hence[4]
14. When $y=10, X=20, Z=5$
$x=k$, and $z=k_{2} / y 5=k_{2} / 10$
K $2=50$
$X=2 y$ and $Z=50 / y$
When $y=20$
$Z=50 / 20=2.5$
Hence[1]
15. For a perfect division into whole numbers the sum of the terms of the ratio must divide 10 Therefore the ratio cannot be 3:4 Hence[4]
16. $\mathrm{SP}=10, \mathrm{Q}=15, \mathrm{R}=\mathrm{x}$
$P=x / 5, Q=x / 10$ and $R=x / 15$
$P: Q: R=x / 5: x / 10: x / 15$
$=6: 3: 2$
Hence[1]
17. S.P at 50% discount $=$ Rs 250
S.P. after 2 successive discounts of 5% and $5 \%=95 \%$ of (55% of 500) $=$
[$95 / 100 * 55 / 100 * 500$]
$=$ Rs. 261.25
differences = Rs 11.25
Hence[2]
18. Rate unstream $=10 / 4=2.5 \mathrm{kmph}$

Rate downstream $=20 / 4=5 \mathrm{kmph}$ velocity of current $=1 / 2(5-2.5) \mathrm{kmph}$
$=1.25 \mathrm{kmph}$
Hence[2]
19. Rate upstream $=50 / 10=5 \mathrm{kmph}$

Rate downstream $=40 / 9=4.44 \mathrm{kmph}$
Rate in still water $=1 / 2(5 * 4.44)$
$=4.72 \mathrm{kmph}$
Hence[4]
20. Rate upstream $=1$
rate downstream $=7$
Total time take $=[14 / 1+14 / 7]$
$=14+2=16$ hours
Hence[1]
21. A cone is generated with radius 10 cm \& vertical height $=6 \mathrm{~cm}$ Volume $=1 \mathrm{P} / 3 * 100 * 6=200 \mathrm{P}$
Hence [1]
22. Let him have Rs. X when he intered the Amount spent $=2+x / 5$
$x-2-x / 5=0$
$5 x-10-x=0$
$4 x=10, x=2.5$
When I entered the $3^{\text {rd }}$ shop, I had $2.5(2.5+2)=11.25$
When I entered the $2^{\text {nd }}$ shop I had $11.25+2(2.5)=33.125$
When I entered the $1^{\text {st }}$ shop I had $33.125+2(2.5)=87.8125$
Hence [1]
23. Total time $=5 / 1+4 / 2+12 / 6$
$=9$ hours
Total distance $=21 \mathrm{~km}$
Average speed $=21 / 9=2.33$ every hr.
Hence[1]
24. It cannot be determined as it depends on the position of the path. Hence[4]
25. $(p-q) 2=(x-y) 2$
$p-q= \pm x-y$
$p-q=x-y$ or $y-x$
$x=p-q+y$ or $q-p+y$
Hence [3]
26. Let the sum interested at 6% be x
$\mathrm{X} * 7 * 6 / 100=100$
$=(13400-x) * 7 * 4 / 100$
$42 x / 10=93800-7 x / 25$
$42 x=93800 * 4-28 x$
$70 x=93800 * 4 / 70=$ Rs 5360
Hence[1]
27. Let ' d ' be the distance and t ' be the normal time

D / $6=t-10 / 60$
D / $5=t+10 / 60$
D / 6-d / 5 = - $10 / 60-10 / 60$
$5 d-6 d / 30=-20 / 60$
$-2 d=-20$
$\mathrm{d}=10 \mathrm{~km}$
Hence [1]
28. Each number in the series in the precious numbers added to the sum of its digits. the last no. $=1+4+7+147$
$=159$
Hence [3]
29. Both the digits must be even and odd multiples of 6 will not be divisibleby 12

The number is 42
And its reverse is 24
The difference $=18$
Hence [1]
30. Let there be x tractors

Area of farm $=2 \times 2$
When one tractor is stolen $x-1$ will
Remain $2 x^{2}-2(x-1)^{2}=62$
Solving
$2 x^{2}-2\left(x^{2}-2 x+1\right)=62$
$2 x^{2}-2 x^{2}+4 x-2=62$
$4 x=60$
$x=15$
No. of tractors $=15-1=14$
Hence [1]
31. All seven digits with have to be used to make a number greater than a million. Since there are 36 's and 27 's the number of distinct persutations $=7!/ 2!3$!
But all persutations starting with zero should let be counted
7! / 2! 3! - 5! / 2! 3!
$=410$
Hence [1]
32. Let the speed of the burglar and the guard be ' x ' min /sec and ' y ' min / sec The guard covered the distance in 3 min 10 sec for which the thief took 5 minutes Therefore $300 \mathrm{x}=190 \mathrm{Y}$
$30 x=19 y$
Also given that
$356 * x=3560 \mathrm{~m}$
$x=10 \mathrm{~m} / \mathrm{sec}$
and $y=300 * 10 / 190=15.07 \mathrm{~m} / \mathrm{sec}$
Hence [1]
33. Let profit be Rs p

Then x gets 0.25 p . and y gets 0.75 p . in the ratio of their investement.
Y pay Rs. 10, 000 per month for 8 months
$=10000 * 8=$ Rs 80,000
$=0.25 p+80000=0.75 p-80000$
$0.5 \mathrm{p}=160000$
$P=320,000$
Hence [2]
34. The series is $3^{*} 1+1,4 * 3+1$ and so on
35. For any positions of $A B \& C$ there are 2 ways of completing the queue either D willl be ahead or behind E since of the total combinations of forming a queue half will have D ahead of E.

Total No. of ways $=5!=120$
But in this case $=60$
Hence[1]
36. One task $=5$ men 10 hrs 1 day $=50-$ man hours
same task $=4$ women 8 hrs 2 days $=64-$ women hours
same tassk $=5$ boys 5 hrs 4 days = 100 - boy hours
each day total labour available $=20$ men $=(200$ man hours $)+9$ women (72 women hours
) +10 boys $=50$ boy hours
$200 * 100 / 50+72 * 100 / 64+50$
$=400+150+50$
$=600$ boy hours
boy hours task days

```
100 1 1
600 1000 ?
= 1000* 100 / 600 = 167 days
from 1 }\mp@subsup{}{}{\mathrm{ st }}\mathrm{ march 167 days = 14 th August.
Hence [4 ]
```

37. Let y 's salary be x
x's salary $=150 \mathrm{x}$
z's salary $=75 \times / 100$
$x+75 \times / 100+150 x / 100=325 x / 100$
$325 x / 100=3,25,000$
$x=325000 * 100 / 325=1,00,000$.
[Hence]
38. Distance Time Speed Days
x $24-18=6 \mathrm{hrs}$ y 200
$2 \mathrm{x} 24-9=15 \mathrm{hrs} 2 \mathrm{y}$?
Days $=200 * 2 x / x * 6 / 15 * y / 2 y=80$ days.
Hence [1]
39. In 1 minute, tyre flat $=1 / 10$-------- Puncture (I)

In 1 minute, tyre flat = $1 / 5$-------- puncture (II)
Together $1 / 10+1 / 5=3 / 10$ in one minute
Remaining $=7 / 10$
$=7 / 10 * 10 / 3=7 / 3$
$=21 / 3$ minutes
Hence[1]
40. (1) (1) / 20-4 = $1 / 16$

Hence [1]
41. Two numbers whose sum is 11 and product of their squares is 30 are sqrt 5 \& sqrt 6
sqrt $11+2$ sqrt 30
$=$ sqrt $(\text { sqrt } 5+\text { sqrt } 6)^{2}$
$=($ sqrt5 + sqrt 6$)$
Hence [1]
42. $17164-3=17161$
sqrt $17161=131$
No. of men in the last row was 131
Hence [2]
43. Let the term be $x: x+50$
$x / x+50=3 / 5$
$5 x=3 x+150=2 x=150$
$x=75$
Hence [4]
44. The ratio of coins $=3 / 1: 2 / 2: 4 / 4$
= $3: 1: 1$
The amount of 25 paise coins is Rs. 60
No of coins $=60 / 0.25$
$=240$ coins
Hence [1]
45. $J+A+V=11250$
$J=1 / 4(A+V)$
$4 \mathrm{~J}=\mathrm{A}+\mathrm{V}$
$5 \mathrm{~J}=11250$
J = $11250 / 5=2250$
Hence [3]
46. Let x invest Rs a for 12 months Y invest Rs 4a for 4 months Z invest Rs 3 a for 2 months The ratio is $12 \mathrm{a}: 16 \mathrm{a}: 6 \mathrm{a}$
Z's share $=$ Rs 8500 * $3 / 17=$ Rs 1500
Hence [4]
47. S. P of 75 toys $=C P$ of 75 toys

Let CP of each toy $=$ Rs 1
CP of 50 toys $=$ Rs 50
SP of 50 toys $=$ Rs 75
$=25 * 100 / 50$
= 50\%
Hence [3]
48. Let Q's contribution $=R s x$

8000 * 6 : $3 x$
16000 : x
ratio of profit $1 / 2: 1 / 2$
= 1 : 1
$16000 / x=1 / 1$
= Rs 16000
Hence [4]
49. Let the marked price be Rs. 100

Final SP after 2 discounts $=15 \%, 75 \%$ of Rs 100
= Rs. 63.75
Single discount $=100-63.75=36.25 \%$
Hence [3]
50. Let C.P. of 1 car $=x$
C.P. of 4 cars $=4 x$
$\%$ profit $=2 x / 4 x * 100$
=50\%
Hence[1]

