## Principle of Mathematical Induction.

Suppose there is a given statement $\mathrm{P}(\mathrm{n})$ involving the natural number n such that
(i) The statement is true for $\mathrm{n}=1$, i.e., $\mathrm{P}(1)$ is true, and
(ii) If the statement is true for $n=k$ (where $k$ is some positive integer), then the statement is also true for $n=k+1$, i.e., truth of $P(k)$ implies the truth of $P(k+1)$. Then, $P(n)$ is true for all natural numbers n .

## Sample Examples

- Prove that $2 n>n$ for all positive integers $n$.

Solution:-

Let $\mathrm{P}(\mathrm{n}): 2^{\mathrm{n}}>\mathrm{n}$
When $n=1,2^{1}>1$. Hence $P(1)$ is true.

Assume that $P(k)$ is true for any positive integers $k$, i.e.,
$2^{k}>k \ldots$ (1)
We shall now prove that $P(k+1)$ is true whenever $P(k)$ is true.
Multiplying both sides of (1) by 2 , we get $2.2^{k}>2 k$ i.e., $2^{k+1}>2 k=k+k>k+1$

Therefore, $P(k+1)$ is true when $P(k)$ is true. Hence, by principle of mathematical induction, $P(n)$ is true for every positive integer $n$.

- For every positive integer $n$, prove that $7^{n}-3^{n}$ is divisible by 4 .


## Solution:-

$P(n): 7^{n}-3^{n}$ is divisible by 4 .

## We note that

$P(1): 71-31=4$ which is divisible by 4 . Thus $P(n)$ is true for $n=1$
Let $P(k)$ be true for some natural number $k$,
i.e., $P(k): 7^{k}-3^{k}$ is divisible by 4 .

We can write $7^{k}-3^{k}=4 d$, where $d \in N$.
Now, we wish to prove that $P(k+1)$ is true whenever $P(k)$ is true.

$$
\begin{aligned}
& \text { Now } 7^{(k+1)}-3^{(k+1)}=7^{(k+1)}-7.3^{k}+7.3^{k}-3^{(k+1)} \\
& =7\left(7^{k}-3^{k}\right)+(7-3) 3^{k}=7(4 d)+(7-3) 3^{k} \\
& =7(4 d)+4.3^{k}=4\left(7 d+3^{k}\right)
\end{aligned}
$$

From the last line, we see that $7^{(k+1)}-3^{(k+1)}$ is divisible by 4. Thus, $P(k+1)$ is true when $P(k)$ is true. Therefore, by principle of mathematical induction the statement is true for every positive integer $n$.

