Probability

- Sample space: The set of all possible outcomes
- Outcomes: A possible result of a random experiment is called its outcome.
- Sample points: Elements of sample space
- Event: A subset of the sample space
- Impossible event : The empty set
- Sure event: The whole sample space
- Simple event: If an event E has only one sample point of a sample space, it is called a simple (or elementary) event.
- Compound Event If an event has more than one sample point, it is called a Compound event.
- Complementary event or 'not event' : The set A' or S - A
- Event A or B : The set $A \cup B$
- Event A and B : The set $A \cap B$
- Event A and not B : The set $A-B$
- Mutually exclusive event: A and B are mutually exclusive if $A \cap B=\varphi$
- Exhaustive and mutually exclusive events: Events E1, E2,..., En are mutually exclusive and exhaustive if $\mathrm{E} 1 \cup \mathrm{E} 2 \cup \ldots \cup \mathrm{En}=\mathrm{S}$ and $\mathrm{Ei} \cap \mathrm{Ej}=\varphi \vee \mathrm{i} \neq \mathrm{j}$
- Probability: Number $P(\omega i)$ associated with sample point ω i such that
(i) $0 \leq P(\omega i) \leq 1$ (ii) $P(\omega i) \Sigma$ for all $\omega i \in S=1$ (iii) $P(A)=P(\omega i) \Sigma$ for all $\omega i \in A$. The number P $(\omega \mathrm{i})$ is called probability.
- Equally likely outcomes: All outcomes with equal probability
- Probability of an event: For a finite sample space with equally likely outcomes, Probability of an event $P(A)=n(A) / n(S)$ where $n(A)=$ number of elements in the set $A, n(S)=$ number of elements in the set S.
- If A and B are any two events, then $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$. Equivalently, $P(A \cup$ $B)=P(A)+P(B)-P(A \cap B)$
- If A and B are mutually exclusive, then $P(A$ or $B)=P(A)+P(B)$
- If A is any event, then $P($ not $A)=1-P(A)$
- Two coins (a one rupee coin and a two rupee coin) are tossed once. Find a sample space.

Solution:-

Heads on both coins $=(\mathrm{H}, \mathrm{H})=\mathrm{HH}$
Head on first coin and Tail on the other $=(H, T)=H T$
Tail on first coin and Head on the other $=(\mathrm{T}, \mathrm{H})=\mathrm{TH}$
Tail on both coins $=(\mathrm{T}, \mathrm{T})=\mathrm{TT}$
Thus, the sample space is $S=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$

- Consider the experiment of rolling a die. Let A be the event 'getting a prime number', B be the event 'getting an odd number'. Write the sets representing the events (i) Aor B (ii) A and B (iii) A but not B (iv) 'not A'.

Solution:-

Here $S=\{1,2,3,4,5,6\}, A=\{2,3,5\}$ and $B=\{1,3,5\}$
(i) ' A or B ' $=A \cup B=\{1,2,3,5\}$
(ii) ' A and $B \prime=A \cap B=\{3,5\}$
(iii) 'A but not B ' $=\mathrm{A}-\mathrm{B}=\{2\}$
(iv) ' n not A ' $=A^{\prime}=\{1,4,6\}$

- A coin is tossed three times, consider the following events. A: 'No head appears', B: 'Exactly one head appears' and C: 'At least two heads appear'. Do they form a set of mutually exclusive and exhaustive events?

Solution:-

The sample space of the experiment is
S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT $\}$
and $A=\{T T T\}, B=\{H T T, T H T, T T H\}, C=\{H H T, H T H, T H H, H H H\}$
Now $A \cup B \cup C=\{T T T$, HTT, THT, TTH, HHT, HTH, THH, HHH $\}=S$
Therefore, A, B and C are exhaustive events.
Also, $\mathrm{A} \cap \mathrm{B}=\varphi, \mathrm{A} \cap \mathrm{C}=\varphi$ and $\mathrm{B} \cap \mathrm{C}=\varphi$
Therefore, the events are pair-wise disjoint, i.e., they are mutually exclusive.
Hence, A, B and C form a set of mutually exclusive and exhaustive events.

- One card is drawn from a well shuffled deck of 52 cards. If each outcome is equally likely, calculate the probability that the card will be (i) a diamond (ii) not an ace.

Solution:-

(1)Let A be the event 'the card drawn is a diamond'

Clearly the number of elements in set A is 13.
Therefore, $P(A)=13 / 52=1 / 4$.
(2) We assume that the event 'Card drawn is an ace' is B Therefore 'Card drawn is not an ace' should be B '.
We know that $P\left(B^{\prime}\right)=1-P(B)=1-(4 / 52)=12 / 13$

- Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is 0.05 and that Ashima will qualify the examination is 0.10 . The probability that both will qualify the examination is 0.02 . Find the probability that
(a) Both Anil and Ashima will not qualify the examination.
(b) At least one of them will not qualify the examination.

Solution:-

Let E and F denote the events that Anil and Ashima will qualify the examination, respectively. Given that $P(E)=0.05, P(F) 0.10$ and $P(E \cap F)=0.02$.
Then
(a) The event 'both Anil and Ashima will not qualify the examination' may be expressed as $E^{\prime} \cap F^{\prime}$. Since, E ' is 'not E ', i.e., Anil will not qualify the examination and F^{\prime} ' is 'not F ', i.e., Ashima will not qualify the examination.

Also $E^{\prime} \cap F^{\prime}=(E \cup F)^{\prime}$ (by Demorgan's Law)
Now $P(E \cup F)=P(E)+P(F)-P(E \cap F)$
or $P(E \cup F)=0.05+0.10-0.02=0.13$
Therefore $P\left(E^{\prime} \cap F^{\prime}\right)=P(E \cup F)^{\prime}=1-P(E \cup F)=1-0.13=0.87$
(b) P (at least one of them will not qualify)
$=1-P($ both of them will qualify $)$
$=1-0.02=0.98$

