Permutations and Combinations.

- Fundamental principle of counting

If an event can occur in m different ways, following which another event can occur in n different ways, then the total number of occurrence of the events in the given order is $m \times n$.

- A permutation is an arrangement in a definite order of a number of objects taken some or all at a time.
- The number of permutations of n different objects taken r at a time, where $0<r \leq n$ and the objects do not repeat is $n(n-1)(n-2) \ldots(n-r+1)$, which is denoted by ${ }^{n} P_{r}$.
- Factorial Notation : The notation n ! represents the product of first n natural numbers, i.e., the product 1×2 $\times 3 \times$.
- . $\times(n-1) \times n$ is denoted as n !
- ${ }^{n} P_{r}=n!/(n-r)!\quad 0 \leq r \leq n$.
- The number of permutations of n objects, where p objects are of the same kind and rest are all different is $n!/ p!$.
- The number of permutations of n objects, where p_{1} objects are of one kind, p_{2} are of second kind, p_{k} are of $k^{\text {th }}$ kind and the rest, if any, are of different kind is $n!\left(p_{1}!p_{2}!\ldots, p_{k}!\right)$.
- Combinations
${ }^{n} P_{r}={ }^{n} C_{r} r!\quad 0<r \leq n$.
- ${ }^{n} C_{r}=n!/(n-r)!r!$
- ${ }^{n} C_{r}={ }^{n} C_{n-r}$
- If ${ }^{n} C_{a}={ }^{n} C_{b}$, $a=b$ or $a=n-b$.

Sample Examples

- How many 2 digit even numbers can be formed from the digits $1,2,3,4,5$ if the digits can be repeated?

Solution:-

There will be as many ways as there are ways of filling 2 vacant places in succession by the five given digits. Here, in this case, we start filling in unit's place, because the options for this place are 2 and 4 only and this can be done in 2 ways; following which the ten's place can be filled by any of the 5 digits in 5 different ways as the digits can be repeated. Therefore, by the multiplication principle, the required number of two digits even numbers is 2×5, i.e., 10 .

- Find the number of permutations of the letters of the word ALLAHABAD.

Solution:-

Here, there are 9 objects (letters) of which there are 4A's, 2 L's and rest are all different.
Therefore, the required number of arrangements $=9!/ 4!2!=5^{*} 6^{*} 7 * 8^{*} 9 / 2=7560$.

- In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?

Solution:-

Total numbers of discs are $4+3+2=9$. Out of 9 discs, 4 are of the first kind (red), 3 are of the second kind (yellow) and 2 are of the third kind (green).

Therefore, the number of arrangements $=9!/ 4!3!2!=1260$.

- A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
Solution:- Here, order does not matter. Therefore, we need to count combinations. There will be as many committees as there are combinations of 5 different persons taken 3 at a time. Hence, the required number of ways $={ }^{5} \mathrm{C}_{3}=10$.
Now, 1 man can be selected from 2 men in ${ }^{2} \mathrm{C}_{1}$ ways and 2 women can be selected from 3 women in ${ }^{3} \mathrm{C}_{2}$ ways.
Therefore, the required number of committees $={ }^{2} \mathrm{C}_{1}{ }^{*} \mathrm{C}_{2}=6$.

