Matrices and Determinants

- A matrix is an ordered rectangular array of numbers or functions.
- A matrix having m rows and n columns is called a matrix of order $m \times n$.
- $\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{m} \times 1$ is a column matrix.
- $\left[a_{i j}\right] 1 \times \mathrm{n}$ is a row matrix.
- An $m \times n$ matrix is a square matrix if $m=n$.
- $A=\left[a_{i j}\right] m \times m$ is a diagonal matrix if $\mathrm{a}_{\mathrm{ij}}=0$, when $\mathrm{i} \neq \mathrm{j}$.
- $A=\left[a_{i j}\right] n \times n$ is a scalar matrix if $a_{i j}=0$, when $i \neq j, a_{i j}=k$, (k is some constant), when $i=j$.
- $A=\left[a_{i j}\right] n \times n$ is an identity matrix, if $a_{i j}=1$, when $\mathrm{i}=\mathrm{j}, \mathrm{a}_{\mathrm{ij}}=0$, when $\mathrm{i} \neq \mathrm{j}$.
- A zero matrix has all its elements as zero.
- $A=\left[a_{i j}\right]=\left[b_{i j}\right]=B$ if (i) A and B are of same order, (ii) $a_{i j}=b_{i j}$ for all possible values of i and j.
- $k A=k\left[a_{i j}\right] m \times n=\left[k\left(a_{i j}\right)\right] m \times n$
- $-\mathrm{A}=(-1) \mathrm{A}$
- $A-B=A+(-1) B$
- $A+B=B+A$
- $(A+B)+C=A+(B+C)$, where A, B and C are of same order.
- $k(A+B)=k A+k B$, where A and B are of same order, k is constant.
- $(k+l) A=k A+I A$, where k and l are constant.
- If $A=\left[a_{i j}\right] m \times n$ and $B=\left[b_{j k}\right] n \times p$, then $A B=C=\left[c_{i k}\right] m \times p$, where $c_{i k}=\sum a_{i j} b_{j k}(i) A(B C)=(A B) C$, (ii) $A(B+$ $C)=A B+A C$, (iii) $(A+B) C=A C+B C$
- If $A=[a i j] m \times n$, then A^{\prime} or $A T=\left[a_{j i j}\right] n \times m(i)\left(A^{\prime}\right)^{\prime}=A$, (ii) $(k A)^{\prime}=k A^{\prime}$, (iii) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$, (iv) $(A B)^{\prime}=B^{\prime} A^{\prime}$
- A is a symmetric matrix if $A^{\prime}=A$.
- A is a skew symmetric matrix if $A^{\prime}=-A$.
- Any square matrix can be represented as the sum of a symmetric and a skew symmetric matrix.
- Elementary operations of a matrix are as follows: (i) $R_{i} \leftrightarrow R_{j}$ or $C_{i} \leftrightarrow C_{j}$ (ii) $R_{i} \rightarrow k R_{i}$ or $C_{i} \rightarrow k C_{i}$ (iii) $R_{i} \rightarrow R i$ $+\mathrm{kR}_{\mathrm{j}}$ or $\mathrm{C}_{\mathrm{i}} \rightarrow \mathrm{C}_{\mathrm{i}}+\mathrm{kC}_{\mathrm{j}}$
- If A and B are two square matrices such that $A B=B A=I$, then B is the inverse matrix of A and is denoted by $A-1$ and A is the inverse of B.
- Inverse of a square matrix, if it exists, is unique.

Determinants

- Determinant of a matrix $A=\left[a_{11}\right]_{1 \times 1}$ is given by $\left|a_{11}\right|=a_{11}$
- For any square matrix A, the $|\mathrm{A}|$ satisfy following properties.
- $\left|A^{\prime}\right|=|A|$, where $A^{\prime}=$ transpose of A.
- If we interchange any two rows (or columns), then sign of determinant changes.
- If any two rows or any two columns are identical or proportional, then value of determinant is zero.
- If we multiply each element of a row or a column of a determinant by constant k, then value of determinant is multiplied by k .
- Multiplying a determinant by k means multiply elements of only one row (or one column) by k .
- If $A=\left[a_{i j}\right]_{3 \times 3}$, then $k . A=k^{3} A$
- If elements of a row or a column in a determinant can be expressed as sum of two or more elements, then the given determinant can be expressed as sum of two or more determinants.
- If to each element of a row or a column of a determinant the equimultiples of corresponding elements of other rows or columns are added, then value of determinant remains same.
- Minor of an element aij of the determinant of matrix A is the determinant obtained by deleting $\mathrm{i}^{\text {th }}$ row and $j^{\text {th }}$ column and denoted by M_{ij}.
- Cofactor of $a_{i j}$ of given by $\mathrm{A}_{\mathrm{ij}}=(-1) \mathrm{i}+\mathrm{j} \mathrm{M}_{\mathrm{ij}}$
- Value of determinant of a matrix A is obtained by sum of product of elements of a row (or a column) with corresponding cofactors. For example,
- $A=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}$.
- If elements of one row (or column) are multiplied with cofactors of elements of any other row (or column), then their sum is zero. For example, $a_{11} A_{21}+a_{12} A_{22}+a_{13} A_{23}=0$
- $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$, where A is square matrix of order n.
- A square matrix A is said to be singular or non-singular according as $|A|=0$ or $|A| \neq 0$.
- If $A B=B A=I$, where B is square matrix, then B is called inverse of A.
- Also $\mathrm{A}-1=\mathrm{B}$ or $\mathrm{B}-1=\mathrm{A}$ and hence $(\mathrm{A}-1)-1=\mathrm{A}$.
- A square matrix A has inverse if and only if A is non-singular.
- $A^{-1}=1 /|A|$
- Unique solution of equation $A X=B$ is given by $X=A-1 B$, where $A \neq 0$.
- A system of equation is consistent or inconsistent according as its solution exists or not.
- For a square matrix A in matrix equation $A X=B$
(i) $|\mathrm{A}| \neq 0$, there exists unique solution
(ii) $|\mathrm{A}|=0$ and $(\operatorname{adj} \mathrm{A}) \mathrm{B} \neq 0$, then there exists no solution
(iii) $|\mathrm{A}|=0$ and $(\operatorname{adj} \mathrm{A}) \mathrm{B}=0$, then system may or may not be consistent.

Area of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is given by

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

