

Matrices and Determinants

- A matrix is an ordered rectangular array of numbers or functions.
- A matrix having m rows and n columns is called a matrix of order m x n.
- $[a_{ij}]m \times 1$ is a column matrix.
- $[a_{ij}]1 \times n$ is a row matrix.
- An m x n matrix is a square matrix if m = n.
- $A = [a_{ij}]m \times m$ is a diagonal matrix if $a_{ij} = 0$, when $i \neq j$.
- $A = [a_{ij}]n \times n$ is a scalar matrix if $a_{ij} = 0$, when $i \neq j$, $a_{ij} = k$, (k is some constant), when i = j.
- $A = [a_{ij}]n \times n$ is an identity matrix, if $a_{ij} = 1$, when i = j, $a_{ij} = 0$, when $i \neq j$.

- A zero matrix has all its elements as zero.
- $A = [a_{ij}] = [b_{ij}] = B$ if (i) A and B are of same order, (ii) $a_{ij} = b_{ij}$ for all possible values of i and j.
- $kA = k[a_{ij}]m \times n = [k(a_{ij})]m \times n$
- -A = (-1)A
- A B = A + (–1) B
- A + B = B + A
- (A + B) + C = A + (B + C), where A, B and C are of same order.
- k(A + B) = kA + kB, where A and B are of same order, k is constant.
- (k + I) A = kA + IA, where k and I are constant.
- If $A = [a_{ij}]m \times n$ and $B = [b_{jk}]n \times p$, then $AB = C = [c_{ik}]m \times p$, where $c_{ik} = \Sigma a_{ij} b_{jk}$ (i) A(BC) = (AB)C, (ii) A(B + C) = AB + AC, (iii) (A + B)C = AC + BC

- If A = $[aij]m \times n$, then A' or AT = $[a_{ji}]n \times m$ (i) (A')' = A, (ii) (kA)' = kA', (iii) (A + B)' = A' + B', (iv) (AB)' = B'A'
- A is a symmetric matrix if A' = A.
- A is a skew symmetric matrix if A' = -A.
- Any square matrix can be represented as the sum of a symmetric and a skew symmetric matrix.
- Elementary operations of a matrix are as follows: (i) R_i ↔ R_j or C_i ↔ C_j (ii) R_i → kR_i or C_i → kC_i (iii) R_i → Ri
 + kR_j or C_i → C_i + kC_j
- If A and B are two square matrices such that AB = BA = I, then B is the inverse matrix of A and is denoted by A–1 and A is the inverse of B.
- Inverse of a square matrix, if it exists, is unique.

Determinants

- Determinant of a matrix $A = [a_{11}]_{1\times 1}$ is given by $|a_{11}| = a_{11}$
- For any square matrix A, the |A| satisfy following properties.
- |A'| = |A|, where A' = transpose of A.
- If we interchange any two rows (or columns), then sign of determinant changes.
- If any two rows or any two columns are identical or proportional, then value of determinant is zero.
- If we multiply each element of a row or a column of a determinant by constant k, then value of determinant is multiplied by k.
- Multiplying a determinant by k means multiply elements of only one row (or one column) by k.
- If $A = [a_{ij}]_{3\times 3}$, then k $A = k^3 A$
- If elements of a row or a column in a determinant can be expressed as sum of two or more elements, then the given determinant can be expressed as sum of two or more determinants.

- If to each element of a row or a column of a determinant the equimultiples of corresponding elements of other rows or columns are added, then value of determinant remains same.
- Minor of an element aij of the determinant of matrix A is the determinant obtained by deleting ith row and jth column and denoted by M_{ii}.
- Cofactor of a_{ij} of given by $A_{ij} = (-1)i + j M_{ij}$
- Value of determinant of a matrix A is obtained by sum of product of elements of a row (or a column) with corresponding cofactors. For example,
- $A = a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13}$.
- If elements of one row (or column) are multiplied with cofactors of elements of any other row (or column), then their sum is zero. For example, a₁₁ A₂₁ + a₁₂ A₂₂ + a₁₃ A₂₃ = 0
- A (adj A) = (adj A) A = |A| I, where A is square matrix of order n.

- A square matrix A is said to be singular or non-singular according as |A| = 0 or $|A| \neq 0$.
- If AB = BA = I, where B is square matrix, then B is called inverse of A.
- Also A-1 = B or B-1 = A and hence (A-1)-1 = A.
- A square matrix A has inverse if and only if A is non-singular.
- $A^{-1} = 1/|A|$
- Unique solution of equation AX = B is given by X = A-1 B, where $A \neq 0$.
- A system of equation is consistent or inconsistent according as its solution exists or not.

• For a square matrix A in matrix equation AX = B

(i) $|A| \neq 0$, there exists unique solution

(ii) |A| = 0 and (adj A) $B \neq 0$, then there exists no solution

(iii) |A| = 0 and (adj A) B = 0, then system may or may not be consistent.

Area of a triangle with vertices (x_1, y_1) , (x_2, y_2) and (x_3, y_3) is given by $\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$