Complex Numbers and Quadratic Equations

- For the complex number z = a + ib, a is called the real part, denoted by Re z and b is called the imaginary part denoted by Im z of the complex number z.
- Let us denote $\sqrt{-1}$ by the symbol i. Then, we have $i^2 = -1$. This means that i is a solution of the equation $x^2 + 1 = 0$.
- Let $z_1 = a + ib$ and $z_2 = c + id$ be any two complex numbers. Then, the sum $z_1 + z_2$ is defined as follows: $z_1 + z_2 = (a + c) + i$ (b + d), which is again a complex number.
- Given any two complex numbers z_1 and z_2 , the difference $z_1 z_2$ is defined as follows: $z_1 z_2 = z_1 + (-z_2)$.
- Let $z_1 = a + ib$ and $z_2 = c + id$ be any two complex numbers. Then, the product $z_1 z_2$ is defined as follows: $z_1 z_2 = (ac bd) + i(ad + bc)$.

- Given any two complex numbers z_1 and z_2 , where $z_2 \neq 0$, the quotient z_1/z_2 is defined by $z_1/z_2 = z_1 * 1/z_2$.
- $(z_1+z_2)^2=z_1^2+z_2^2+2z_1z_2$
- $(z_1-z_2)^2=z_1^2+z_2^2-2z_1z_2$
- $z_1^2 z_2^2 = (z_1 + z_2)(z_1 z_2)$
- Let z = a + ib be a complex number. Then, the modulus of z, denoted by |z|, is defined to be the non-negative real number $\sqrt{a^2 + b^2}$, i.e., $|z| = \sqrt{a^2 + b^2}$ and the conjugate of z, denoted as z, is the complex number a ib, i.e., z = a ib.
- $\bullet \quad z z' = |z|^2$
- Polar representation the nonzero complex number $z = x + iy z = r (\cos\theta + i \sin\theta)$ Where $r = \sqrt{x^2 + y^2}$.

Quadratic Equations

Roots of equation ax²+bx+c

• $x=(-b+\sqrt{b^2-4ac})/2a$ and $(-b-\sqrt{b^2-4ac})/2a$

or

• $(-b+\sqrt{4ac-b^2i})/2a$ and $(-b-\sqrt{4ac-b^2i})/2a$

Sample Examples

• Find the multiplicative inverse of 2 - 3i.

Solution:-

$$z = 2 - 3i$$

$$z'=2 + 3i$$

$$|z|^2 = (2^2 + (-3)^2) = 13$$

$$z^{-1}=z'/|z|^2=(2+3i)/13=(2/13)+(3/13)i.$$

• Represent the complex number $z = 1 + i \sqrt{3}$ in the polar form.

1 = r cos θ,
$$\sqrt{3}$$
 = r sin θ

$$r^2 (\cos^2 \theta + \sin^2 \theta) = 4$$

$$r = 2$$

$$\cos \theta = (1/2)$$
, $\sin \theta = (\sqrt{3}/2)$

$$\theta = (\pi/3)$$

$$z = 2(\cos \pi/3 + i \sin \pi/3)$$

• Solve $x^2 + 2 = 0$

$$x^2 + 2 = 0$$

or
$$x^2 = -2 x = \pm \sqrt{-2} = \pm \sqrt{2} i$$
.