Functions	Domain	Range (Principal Value Branches)
$y=\sin ^{-1} x$	$[-1,1]$	$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
$y=\cos ^{-1} x$	$[-1,1]$	$[0, \pi]$
$y=\operatorname{cosec}^{-1} x$	$\mathbf{R}-(-1,1)$	$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
$y=\sec ^{-1} x$	$\mathbf{R}-(-1,1)$	$[0, \pi]-\left\{\frac{\pi}{2}\right\}$
$y=\tan ^{-1} x$	\mathbf{R}	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$y=\cot ^{-1} x$	\mathbf{R}	$(0, \pi)$

- The value of inverse trigonometric functions which lies in its principal value branch is called the principal value of that inverse trigonometric functions.
- $y=\sin ^{-1} x \Rightarrow x=\sin y$
- $x=\sin y \Rightarrow y=\sin ^{-1} x$
- $\sin \left(\sin ^{-1} x\right)=x$
- $\sin ^{-1}(\sin x)=x$
- $\sin ^{-1}(1 / x)=\operatorname{cosec}^{-1} x$
- $\cos ^{-1}(-x)=\pi-\cos ^{-1} x$
- $\cos ^{-1}(1 / x)=\sec ^{-1} x$
- $\cot ^{-1}(-x)=\pi-\cot ^{-1} x$
- $\tan ^{-1}(1 / x)=\cot ^{-1} x$
- $\sec ^{-1}(-x)=\pi-\sec ^{-1} x$
- $\sin ^{-1}(-x)=-\sin ^{-1} x$
- $\tan ^{-1}(-x)=-\tan ^{-1} x$
- $\tan ^{-1} x+\cot ^{-1} x=\pi / 2$
- $\operatorname{cosec}^{-1}(-x)=-\operatorname{cosec}^{-1} x$
- $\sin ^{-1} x+\cos ^{-1} x=\pi / 2$
- $\operatorname{cosec}^{-1} x+\sec ^{-1} x=\pi / 2$
- $\tan ^{-1} x+\tan ^{-1} y=(x+y) /(1-x y)$
- $\tan ^{-1} x-\tan ^{-1} y=(x-y) /(1+x y)$
- $2 \tan ^{-1} x=\tan ^{-1}\left(2 x /\left(1-x^{2}\right)\right)$
- $2 \tan ^{-1} x=\sin ^{-1}\left(2 x /\left(1+x^{2}\right)\right)=\cos ^{-1}\left(\left(1-x^{2}\right) /\left(1+x^{2}\right)\right)$

Sample Examples

- Find the principal value of $\sin ^{-1}(1 / \sqrt{ } 2)$

Solution:-
$\sin ^{-1}(1 / \sqrt{ } 2)=y$
$\sin y=(1 / \sqrt{ } 2)$
We know that the range of the principal value branch of $\sin -1$ is, $(-\pi / 2, \pi / 2)$ and $\sin (\pi / 4)=$ (1/V2)
Hence the value of $\sin ^{-1}(1 / \sqrt{ } 2)$ is $\pi / 4$.

- Show that $\sin ^{-1}\left(2 x \sqrt{ } 1-x^{2}\right)=2 \sin ^{-1} x$

Solution:-

$$
\begin{aligned}
& \text { Let } x=\sin \theta . \text { Then } \sin ^{-1} x=\theta \\
& \begin{aligned}
\sin ^{-1}\left(2 x \sqrt{ } 1-x^{2}\right) & =\sin ^{-1}\left(2 \sin \theta \sqrt{ } 1-\sin ^{2} \theta\right) \\
& =\sin ^{-1}(2 \sin \theta \cos \theta) \\
& =\sin ^{-1}(\sin 2 \theta) \\
& =2 \theta=2 \sin ^{-1} x .
\end{aligned}
\end{aligned}
$$

