Polymers

The molecular mass of polymers varies from 103-107 u.

Rayon has a shine like silk, so also known as artificial silk.

Vulcanised rubber is also an example of semisynthetic polymers.

Due to presence of chains of varying length in a polymer sample, their molecules mass is always expressed as an average.

Bakelite due to presence of extensive crosslinking is an example of thermosetting polymer.

Monomer	Polymer	Uses	
$H_2C = CH_2$ (Ethylene)	Polyethylene	Packaging, bottles, cable insulation, films and sheets	
$H_2C = CHCH_2$ (Propylene)	Polypropylene	Automotive molding, carpet, rope	
$H_2C = CHC_6H_5$ (Styrene)	Polystyrene (styron)	Foam and molded articles (toys), brush handles, combs, Television coil, cups, bottle caps, false roofing	
$F_2 C = CF_2$ Teflon (Tetrafluoroethylene)		Values and gaskets, coatings	

Both glucose and fructose show mutarotation, ie, they change their optical rotations.

The monomer of natural rubber is 2-methyl-1,3-butadiene

Polymerisation of caprolactum yields nylon-6

The additive used in the making of PVC is called Plasticiser.

Starch contains $1,4'-\alpha$ -glycoside bond

Hydrolysis of sucrose gives invert sugar.

Process of formation of polymers from respective monomers is called polymerisation.

Classifications:

1) Based on the nature:

- a) Natural: plants and animal products, eg: proteins, cellulose, starch
- b) Semi-synthetic: cellulose derivatives like cellulose acetate (rayon)
- c) Synthetic: plastic (polythene), synthetic fibres-nylon 6 6

2) Structure based:

- a) Linear polymer: long and straight chains, eg: high density polythene, PVC
- b) Branched polymer: linear chains having some branches, eg: low density polythene
- c) Cross linked/network polymers: formed due to the reaction between bi and tri functional monomers. Have strong covalent bonds between various linear polymer chains, eg: Bakelite, melamine.

3) Mode of polymerisation:

a) Addition: repeated addition of monomer molecules possessing double or triple bonds.

They are of 2 types:

- i) Homopolymers: single monomeric species (constituent)
- ii) Copolymers: 2 different monomeric species (constituent)

b) Condensation polymers: repeated condensation reaction between 2 bi/tri functional monomeric units.

Elimination of small molecules like water, alcohol, HCletc

Eg: terylene;nylon

- 4) Molecular forces:
 - a) Elastomers: rubber like solids with elastic properties.

Chains held together by weakest inter-molecular forces, which allow the polymer to be stretched.

Cross links introduced between chains so that polymer retracts to original position/shape

Eg: Buna-S, Buna-N

b) Fibres: thread forming solids that have high tensile strength and high modulus.

Strong intermolecular forces- Hydrogen bonding

Close packing of chains hence leading to a crystalline nature.

Eg: polyamides and polyesters

c) Thermoplastic polymers: linear/slightly branched long chain molecules.

Capable of repeatedly softening on heating and hardening on cooling.

Intermolecular forces are inbetween that of elastomers and fibres.

Eg: polythene, polystyrene, polyvinyls.

d) Thermosetting polymers: cross linked/heavily branched.

On heating undergoes extensive crosslinking in moulds and becomes infusible and can't be reused.

Eg: Bakelite

In the presence of an organic peroxide initiator, the alkenes and their derivatives undergo **addition polymerisation** or **chain growth polymerisation** through a **free radical mechanism**. Polythene, teflon, orlon, etc. are formed by addition polymerisation of an appropriate alkene or its derivative.

Condensation polymerisation reactions are shown by the interaction of bi – or poly functional monomers containing – NH2, – OH and – COOH groups. This type of polymerisation proceeds through the elimination of certain simple molecules as H2O, CH3OH, etc.

Name of Polymer	Monomer	Structure	Uses
Polypropene	Propene	$(\operatorname{CH}_{2}^{\operatorname{CH}_{3}})_{n}$	Manufacture of ropes, toys, pipes, fibres, etc.
Polystyrene	Styrene	$\underbrace{+}_{CH_2-CH} \underbrace{+}_{D}_{R}$	As insulator, wrapping material, manufacture of toys, radio and television cabinets.
Polyvinyl chloride (PVC)	Vinyl chloride	$(CH_2-CH)_n$	Manufacture of rain coats, hand bags, vinyl flooring, water pipes.
Urea-formaldehyle Resin	(a) Urea (b) Formaldehyde	- NH-CO-NH-CH ₂	For making unbreak- able cups and laminated sheets.
Glyptal	(a) Ethylene glycol (b) Phthalic acid	$+ \operatorname{och}_2 - \operatorname{Ch}_2 \operatorname{ooc}_n$	Manufacture of paints and lacquers.
Bakelite	(a) Phenol (b) Formaldehyde	$(\overset{O-H}{\longleftarrow} \overset{O-H}{\longleftarrow} \overset{O-H}{\longleftarrow} \overset{CH_2}{\longleftarrow})_n$	For making combs, electrical switches, handles of utensils and computer discs.