Differential Equations

- An equation involving derivatives of the dependent variable with respect to independent variable (variables) is known as a differential equation.
- Order of a differential equation is the order of the highest order derivative occurring in the differential equation.
- Degree of a differential equation is defined if it is a polynomial equation in its derivatives.
- Degree (when defined) of a differential equation is the highest power (positive integer only) of the highest order derivative in it.
- A function which satisfies the given differential equation is called its solution.
- The solution which contains as many arbitrary constants as the order of the differential equation is called a general solution and the solution free from arbitrary constants is called particular solution.
- To form a differential equation from a given function we differentiate the function successively as many times as the number of arbitrary constants in the given function and then eliminate the arbitrary constants.
- Variable separable method is used to solve such an equation in which variables can be separated completely i.e. terms containing y should remain with dy and terms containing x should remain with dx .
- A differential equation which can be expressed in the form $d y / d x=f(x, y)$ where $f(x, y)$ is a homogenous function of degree zero is called a homogeneous differential equation.
- A differential equation of the form ($\mathrm{dy} / \mathrm{dx}$) $+P y=Q$, where P and Q are constants or functions of x only is called a first order linear differential equation.

Examples

- Form the differential equation representing the family of curves $y=a \sin (x+b)$, where a, b are arbitrary constants.

Solution:-

We have $y=a \sin (x+b)$
$d y / d x=a \cos (x+b)$
$d^{2} y / d x^{2}=-a \sin (x+b)$

Eliminating a and b using equations 1 and 2 we get $\left(d^{2} y / d x^{2}\right)+y=0$.

- Find the general solution of the differential equation $(d y / d x)=\left(1+y^{2}\right) /\left(1+x^{2}\right)$

Solution:-
$\left(d y /\left(1+y^{2}\right)\right)=\left(d x /\left(1+x^{2}\right)\right)$

Integrating both sides,
$\int\left(d y /\left(1+y^{2}\right)\right)=\int\left(d x /\left(1+x^{2}\right)\right)$
$\tan ^{-1} y=\tan ^{-1} x+C$

- Find the general solution of the differential equation $y d x-\left(x+2 y^{2}\right) d y=0$.

Solution:-
$(d x / d y)-(x / y)=2 y$
This is of the type $(\mathrm{dx} / \mathrm{dy})+\mathrm{Px}=\mathrm{Q}$ where $\mathrm{P}=-(1 / \mathrm{y}) \mathrm{Q}=2 \mathrm{y}$
Hence IF $=e^{f(-d y / y)}=e^{-\log y}=(1 / y)$
The solution of differential equation is

$$
\begin{aligned}
& x(1 / y)=\int(2 y)(1 / y) d y+C \\
& (x / y)=\int 2 d y+C \\
& (x / y)=2 y+C \\
& x=2 y^{2}+C y
\end{aligned}
$$

