Straight Lines

- Distance between the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is

$$
P Q=\sqrt{ }\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}
$$

- The coordinates of a point dividing the line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ internally, in the ratio m : n are

$$
\left[\left(m x_{2}+n x_{1}\right) /(m+n),\left(m y_{2}+n y_{1}\right) /(m+n)\right] .
$$

- If $m=n$, the coordinates will be $\left[\left(x_{1}+x_{2}\right) / 2,\left(y_{1}+y_{2}\right) / 2\right]$.
- Area of the triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is

$$
1 / 2\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]
$$

- If the area of the triangle $A B C$ is zero, then three points A, B and C lie on a line, i.e., they are collinear.
- If θ is the inclination of a line I , then $\tan \theta$ is called the slope or gradient of the line I . The slope of a line whose inclination is 90° is not defined. The slope of a line is denoted by m . Thus, $\mathrm{m}=\tan \theta, \theta \neq 90^{\circ}$.
- Slope $m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$
- If the line I_{1} is parallel to I_{2}, then their inclinations are equal.
- If the lines I_{1} and I_{2} are perpendicular such that I_{1} makes an angle β and I_{2} makes an angle α with the x axis, then $\beta=\alpha+90^{\circ}$.
- Two non-vertical lines are perpendicular to each other if and only if their slopes are negative reciprocals of each other $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$.
- An acute angle (say θ) between lines L1 and L2 with slopes $m 1$ and $m 2$ is given by $\tan \theta=|(m 2-m 1) /(1+m 1 m 2)|, 1+m 1 m 2 \neq 0$.
- Two lines are parallel if and only if their slopes are equal.
- Two lines are perpendicular if and only if product of their slopes is -1 .
- Three points A, B and C are collinear, if and only if slope of $A B=$ slope of $B C$.
- Equation of the horizontal line having distance a from the x-axis is either $y=a$ or $y=-a$.
- Equation of the vertical line having distance b from the y-axis is either $x=b$ or $x=-b$.
- The point (x, y) lies on the line with slope m and through the fixed point (xo, yo), if and only if its coordinates satisfy the equation $y-y o=m(x-x o)$.
- Equation of the line passing through the points $(x 1, y 1)$ and ($x 2, y 2$) is given by $(y-y 1)=[(y 2-y 1) /(x 2-x 1)](x-x 1)$
- The point (x, y) on the line with slope m and y-intercept c lies on the line if and only if $y=m x+c$.
- If a line with slope m makes x-intercept d. Then equation of the line is $y=m(x-d)$.
- Equation of a line making intercepts a and b on the x-and y-axis, respectively, is $x / a+y / b=1$.
- The equation of the line having normal distance from origin p and angle between normal and the positive x-axis ω is given by $x \cos \omega+y \sin \omega=p$.
- Any equation of the form $A x+B y+C=0$, with A and B are not zero, simultaneously, is called the general linear equation or general equation of a line.
- The perpendicular distance (d) of a line $A x+B y+C=0$ from a point ($x 1, y 1$) is given by $d=|(A x 1+B y 1+c)| / \sqrt{ } A^{2}+B^{2}$
- Distance between the parallel lines $A x+B y+C 1=0$ and $A x+B y+C 2=0$, is given by $d=|C 1-C 2| / \sqrt{ } A^{2}+B^{2}$.

Examples

- If the angle between two lines is $\pi / 4$ and slope of one of the lines is $1 / 2$, find the slope of the other line.

Solution:-
$\tan \theta=|(m 2-m 1) /(1+m 1 m 2)|$
$m 1=1 / 2$
$m 2=m$
$\theta=\pi / 4$

Substituting values,

$$
\begin{aligned}
& |(m-1 / 2) /(1+m / 2)|=1 \\
& (m-1 / 2) /(1+m / 2)=1 \text { and }-(m-1 / 2) /(1+m / 2)=1 \\
& m=3 \text { and } m=-1 / 3
\end{aligned}
$$

- Three points $P(h, k), Q(x 1, y 1)$ and $R(x 2, y 2)$ lie on a line. Show that $(h-x 1)(y 2-y 1)=(k-y 1)(x 2-x 1)$.

Solution:-

Since points P, Q and R are collinear, we have Slope of $P Q=$ Slope of $Q R$

$$
\begin{aligned}
& (y 1-k) /(x 1-h)=(y 2-y 1) /(x 2-x 1) \\
& (h-x 1)(y 2-y 1)=(k-y 1)(x 2-x 1)
\end{aligned}
$$

- Find the equation of the line through $(-2,3)$ with slope -4 .

Solution:-

Here $m=-4$ and given point $(x 0, y 0)$ is $(-2,3)$. By slope-intercept form formula, equation of the given line is $y-3=-4(x+2)$ or $4 x+y+5=0$, which is the required equation.

- Equation of a line is $3 x-4 y+10=0$. Find its (i) slope, (ii) x - and y-intercepts.

Solution:-
(1) Given equation $3 x-4 y+10=0$ can be written as

$$
y=3 / 4 x+5 / 2
$$

Comparing with $y=m x+c$, we have slope of the given line as $m=4 / 3$
(2)Given equation can be written as

$$
x /(-10 / 3)+y /(5 / 2)=1
$$

y intercept is $5 / 2$.

- Find the equation of a line perpendicular to the line $x-2 y+3=0$ and passing through the point $(1,-2)$.

Solution:-

Given line $x-2 y+3=0$ can be written as $y=x / 2+3 / 2$

Slope of the line (1) is $m 1=2$. Therefore, slope of the line perpendicular to line (1) is $m 2=-1 / m 1=-1 / 2$
Equation of the line with slope -2 and passing through the point $(1,-2)$ is $y-(-2)=-2(x-1)$ or $y=-2 x$.

