- In three dimensions, the coordinate axes of a rectangular Cartesian coordinate system are three mutually perpendicular lines. The axes are called the x, y and z-axes.
- The three planes determined by the pair of axes are the coordinate planes, called $X Y, Y Z$ and $Z X$-planes.
- The three coordinate planes divide the space into eight parts known as octants.
- The coordinates of a point P in three dimensional geometry is always written in the form of triplet like (x, y, z). Here x, y and z are the distances from the $Y Z, Z X$ and $X Y$-planes.
(i) Any point on x-axis is of the form ($\mathrm{x}, 0,0$)
(ii) Any point on y-axis is of the form $(0, y, 0)$
(iii) Any point on z-axis is of the form $(0,0, z)$.
- Distance between two points $\mathrm{P}(\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1)$ and $\mathrm{Q}(\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2)$ is given by

$$
P Q=\sqrt{ }(x 2-x 1)^{2}+(y 2-y 1)^{2}+(z 2-z 1)^{2}
$$

Introduction to three dimensional geometry

- The coordinates of the point R which divides the line segment joining two points $P(x 1 y 1 z 1)$ and $Q(x 2$, $y 2, z 2$) internally and externally in the ratio $m: n$ are given by
$[(m x 2+n x 1) /(m+n),(m y 2+n y 1) /(m+n),(m z 2+n z 1) /(m+n)]$ and $[(m x 2-n x 1) /(m+n),(m y 2-n y 1) /(m+n),(m z 2-$ $n z 1) /(m+n)]$
- The coordinates of the mid-point of the line segment joining two points $P(x 1, y 1, z 1)$ and $Q(x 2, y 2, z 2)$ are $[(x 1+x 2) / 2,(y 1+y 2) / 2,(z 1+z 2) / 2]$
- The coordinates of the centroid of the triangle, whose vertices are ($x 1, y 1, z 1$) ($x 2, y 2, z 2$) and ($x 3, y 3, z 3$), are
$[(x 1+x 2+x 3) / 2,(y 1+y 2+y 3) / 2,(z 1+z 2+z 3) / 2]$

Sample Examples

- Find the distance between the points $\mathrm{P}(1,-3,4)$ and $\mathrm{Q}(-4,1,2)$.

Solution:-
The distance $P Q$ between the points $P(1,-3,4)$ and $Q(-4,1,2)$ is

$$
\begin{aligned}
P Q & =\sqrt{ }(-4-1)^{2}+(1-(-3))^{2}+(2-4)^{2} \\
& =\sqrt{ } 45 \text { units }
\end{aligned}
$$

- Find the equation of the set of the points P such that its distances from the points $A(3,4,-5)$ and $B(-2$, $1,4)$ are equal.

Solution:-

If $P(x, y, z)$ be any point such that $P A=P B$

$$
\begin{aligned}
& \sqrt{ }(x-3)^{2}+(y-4)^{2}+(z+5)^{2}=\sqrt{ }(x+2)^{2}+(y-1)^{2}+(z-4)^{2} \\
& (x-3)^{2}+(y-4)^{2}+(z+5)^{2}=(x+2)^{2}+(y-1)^{2}+(z-4)^{2} \\
& 10 x+6 y-18 z-29=0
\end{aligned}
$$

- The centroid of a triangle $A B C$ is at the point $(1,1,1)$. If the coordinates of A and B are $(3,-5,7)$ and $(-1$, $7,-6)$, respectively, find the coordinates of the point C.

Solution:-

Let the coordinates of C be (x, y, z) and the coordinates of the centroid G be $(1,1,1)$. Then $(x+3-1) / 3=1$
$x=1$
$(y-5+7) / 3=1$
$y=1$
$(z+7-6) / 3=1$
z = 2

