COMPUTING

Small Transistors are used in \qquad generation of computers. (March 06, June 09)
All parts of computer are controlled by \qquad (2006, 2007, 2009)
Input, Output, CPU are \qquad of the computer. (June 2006)
An example for output is \qquad (June 2006)
Vacuum tubes are used in \qquad generation of computers (March 2007)
The language known to the computers is called \qquad (June 2009)
\qquad is used to make a diagrammatic representation of an algorithm (March 2008)
7.

The father of computer is \qquad (March 2008)
9. To express the algorithm in a language understandable by a computer is called \qquad
10. The number of major parts in a computer is \qquad (June 2009)
11. C.P.U means \qquad -
large amount of information is stored in \qquad unit of computers.
13. The method of solving a problem is called \qquad
14. \qquad are used in fourth generation of computers.
15. All the mathematical operations are carried out in \qquad units.
16. The input unit, C.P.U and output unit all together is called \qquad
17. The unit that gains results from C.P.U is \qquad
18. Example for computer language is \qquad
19. The present day computers are made as \qquad generation computers.
20. In the preparation of flow charts, we use Rhombus shaped box for \qquad
21. A computer is an \qquad device.
22. Pictorial representation of algorithm is called \qquad
23. Printer is example for \qquad unit
24. COBOL means \qquad
25. The computers built in between 1950-1960 are called as \qquad generation of computers.
26. \qquad is example for Input unit
27. An algorithm means \qquad
28. The Rhombus shaped box is used in a flow chart for \qquad
29. Each computer consists of three essential units, namely Input unit, output unit and the \qquad unit.
30. BASIC is \qquad language.
31. Father of modern computers is \qquad
32. \qquad are used in third generation of computers.
33. A.L.U means \qquad

KEY

1. Second
2. C.P.U
3. Hardware
4. printer
5. First
6. Higher language (or) software programming language
7. Flow chart
8. Charles Babbage
9. Programming language
10.3
10. Central Processing Unit
11. Memory
12. Programme
13. Very large scale integrated circuites
14. Arithmetic and logical unit
15. Hardware
16. Out put
17. COBOL (or) PASCAL
18. $\mathrm{IV}^{\text {th }}$ generation
19. Decision box
20. Eelectronic
21. Flowchart
23.Output
22. Common business oriented language
23. It generation
24. Key board
25. Plan of obtaining a solution to a problem
26. Decision making
27. Central Processing Unit (C.P.U.)

Important symbols

1. Negation	\sim
2. And	\wedge
3. Or	\checkmark
4. Implie	\Rightarrow
5. If and only if	\Leftrightarrow
6. For all	\forall
7. For some	\exists
8. Belongs	ϵ
9. Not belongs	\pm
10. Subset	C
11. Superset	\bigcirc
12. Union	\cup
13. Intersection	\bigcirc
14. Powerset	μ
15. Null set	ϕ
16. Complement of A	$\mathbf{A}^{1} / \mathrm{A}^{\mathrm{c}}$
17. Cartesian product of A, B is	$\mathbf{A} \times \mathbf{B}$
18. Identity function	I (A)
19. Discriminant	Δ or D
20. Transpose of A	$A^{\text {T }}$
21. Inverse of A	A^{-1}
22. Fistle function A to B	$\mathrm{f}: \mathbf{A} \rightarrow \mathrm{B}$
23. Composite function of f and g	gof
24. Sum of first ' n ' natural numbers	$\Sigma \mathrm{n}$
25. $\mathrm{n}^{\text {th }}$ term	t_{n}
26. Sum of 'n' terms	S_{n}
27. Arithmetic mean	x
28. Sum of frequencies	$\Sigma \mathrm{f}$ or N

