1. If $\mathrm{A}=\left(\begin{array}{cc}4 & 3 \\ -2 & 1\end{array}\right)$ then $|\mathrm{A}|=$ \qquad (March 09)
2. If $\left(\begin{array}{cc}4 & -3 \\ 2 & 32\end{array}\right)=\left(\begin{array}{cc}4 & -3 \\ 2 & 2^{t}\end{array}\right)$ then $t=$ \qquad
3. If $\left(\begin{array}{cc}x & 3 \\ 1 & 2\end{array}\right)\binom{2}{-1}=\binom{5}{0}$ then the value of ' x ' is \qquad
4. $\left|\begin{array}{cc}\operatorname{Tan} \theta & \sec \theta \\ \sec \theta & \operatorname{Tan} \theta\end{array}\right|=$ \qquad
5. If $|\mathrm{A}|=0$ then the matrix has \qquad -
6. The mathematician who introduced matrices is \qquad (June 2006)
7. A, B are two matrices $(\mathrm{AB})^{\mathrm{T}}=$ \qquad -
8. The condition to multiply two matrices A, B is \qquad
9. $\mathrm{M} \times\left(\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}6 & 10\end{array}\right)$ then order of $\mathrm{M}=$ \qquad
10. If $\mathrm{A}=\left(\begin{array}{ll}\mathrm{x} & 3 \\ 3 & \mathrm{x}\end{array}\right)$ has no multiplicative inverse then $\mathrm{x}=$ \qquad
11. If the transpose of a given matrix is equal to its additive inverse, then the matrix is called \qquad
12. Matrix obtained by interchanging rows and columns is called \qquad (March 2009)
13. If the rows and columns of a matrix are same, then it is called \qquad (March 09)
14. If $\left(\begin{array}{ll}\mathrm{a} & 5 \\ 8 & \mathrm{~b}\end{array}\right)-\left(\begin{array}{cc}4 & 6 \\ 7 & 2\end{array}\right)=\left(\begin{array}{cc}2 & -1 \\ 1 & 5\end{array}\right)$ then a and b are \qquad
15. If $\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)\binom{2}{-1}=\binom{x}{-1}$ then $x=$ \qquad
16. If $\left|\begin{array}{cc}2 & -4 \\ d & 5\end{array}\right|=14$ then $\mathrm{d}=$ \qquad
17. $\mathrm{A}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 0 & 1\end{array}\right)_{2 \times 3} ; \mathrm{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)_{2 \times 2}$
then $\mathrm{AB}=$ \qquad
18. If $\mathrm{P}=\left(\begin{array}{ll}3 & 0 \\ 0 & \lambda\end{array}\right)$ is to be scalar matrix then $\lambda=$ \qquad
19. If A and B are two matrices then $(\mathrm{AB})^{-1}=$ \qquad
20. If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $a d=b c$ then A is $\quad \ldots \quad$ matrix
21. If $A=\left(\begin{array}{cc}1 & -2 \\ -3 & 4\end{array}\right)$ and $\mathrm{AD}=\mathrm{A}$ then D is \qquad Matrix
22. If $\mathrm{A}_{2 \times 3}, \mathrm{~B}_{3 \times 2}$ then the order of $\mathrm{A} \times \mathrm{B}$ is \qquad
23. If $A B=K I$, where $K \in R$, then $A^{-1}=$ \qquad
24. If A is a matrix then $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=$ \qquad
\square
25. If $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right)$ then $a+b+c+d=$ \qquad (June 2005)
26. The order of A is 3×2 then the order of A^{T} is \qquad
27. $\left(\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right)$ is example of \qquad
28. $\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)_{3 \times 1}\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)_{1 \times 3}=$ \qquad
29. If A is matrix then $\mathrm{A} \cdot \mathrm{A}^{-1}=\mathrm{A}^{-1} \cdot \mathrm{~A}=$ \qquad
30. Number of rows in a Row matrix
\qquad
31. The order of A and B are 3×4 and 5×3 then the order of BA is \qquad
32. If A is 2×2 matrix such that $A=A^{-1}$ then $A^{2}=$ \qquad (June 2009)
33. A is any 2×2 matrix. if $\mathrm{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ then $\mathrm{AB}=$ \qquad (June 2009)
34. The Inverse of an identity matrix is \qquad (March 2009)
35. If $A=\left(\begin{array}{cc}1 & 4 \\ 0 & -1\end{array}\right)$ then $A^{-1}=$ \qquad (March 08)
36. If $\left(\begin{array}{cc}x+y & x-y \\ 2 x+3 y & 2 x-3 y\end{array}\right)=\left(\begin{array}{cc}2 & 0 \\ 5 & -1\end{array}\right)$ then $x=$ \qquad (March 2008)
37. In a Matrix $\left(\begin{array}{ccc}1 & 8 & 4 \\ 2 & 3 & 0 \\ 5 & 7 & -4\end{array}\right)$ the element in $2^{\text {nd }}$ row and $3^{\text {rd }}$ column is \qquad
38. $A=\binom{x}{y}_{2 \times 1}, B=\left(\begin{array}{ll}5 & 2)_{1 \times 2} \text {, then } \mathrm{AB}= \\ =\end{array}\right.$ \qquad (June 2007)
39. While solving the equations $3 x+4 y=8$ and $x-6 y=10$ by Cramer's method then the matrix $B_{1}=$
40. The determinant of a singular matrix is \qquad -
41. If $A=\left(\begin{array}{ll}5 & 7 \\ 0 & 8\end{array}\right)$ and $A+B=A$ then B is \qquad matrix
42. If $\mathrm{P}=\left(\begin{array}{ll}4 & -5 \\ 7 & -6\end{array}\right)$ and $\mathrm{P}+\mathrm{R}=\mathrm{I}$ then $\mathrm{R}=$ \qquad
43. If $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right), \mathrm{B}=\left(\begin{array}{ll}2 & 4 \\ 3 & 5\end{array}\right)$ and $\mathrm{A}-\mathrm{B}+\mathrm{X}=0$ then the Matrix X is \qquad
44. In a Matrix the number of rows are not equal to number of columns then the matrix is \qquad
45. A square matrix in which each of the principal diagonal elements are equal to one and all other elements are zero is called a \qquad matrix 46. If the transpose of a given matrix is equal to its additive inverse that matrix is called \qquad -
46. 10
2.5
47. 4
48. -1
49. has no multiplicative inverse
50. Author Cayley
51. $\mathrm{B}^{\mathrm{T}} . \mathrm{A}^{\mathrm{T}}$
52. No.of Columns in $\mathrm{A}=$ Rows in B
53. (1×2)
54. ± 3
55. Skew symmetric
56. Transpose of matrix
57. Square matrix
58. 6,7
59. -1
60. 1
61. is not defined
18.3
62. $\mathrm{B}^{-1} \cdot \mathrm{~A}^{-1}$
63. Singular matrix
64. Identity matrix
65. 2×2
66. $\frac{1}{\mathrm{~K}} \mathrm{~B}$.
67. A
68. 5
69. 2×3
70. 3×3 scalar matrix
71. $\left(\begin{array}{ccc}2 & 4 & 6 \\ 3 & 6 & 9 \\ 4 & 8 & 12\end{array}\right)$
72. I
30.1
31.5×4
73. I
74. A
75. also identity matrix
76. $\left(\begin{array}{cc}1 & 4 \\ 0 & -1\end{array}\right)$ (or) A
77. 1
37.0
78. $\left(\begin{array}{ll}5 \mathrm{x} & 2 \mathrm{x} \\ 5 \mathrm{y} & 2 \mathrm{y}\end{array}\right)$
79. $\left(\begin{array}{cc}8 & 4 \\ 10 & -6\end{array}\right)$
80. zero
81. null
82. $\left(\begin{array}{ll}-3 & 5 \\ -7 & 7\end{array}\right)$ 43. $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$
83. Rectangle matrix
84. Identity matrix
85. Skew symmetric matrix

Important Questions

4 Marks

1. If $\mathrm{A}=\left(\begin{array}{cc}-2 & 1 \\ 3 & -1\end{array}\right), \mathrm{B}=\left(\begin{array}{cc}2 & 0 \\ 5 & -3\end{array}\right)$?
find 1) A^{-1} 2) B^{-1} 3) $\left.(A B)^{-1} 4\right) B^{-1} A^{-1}$?
2. Solve the following linear system of equations using cramers method $4 x-y=16$ and $\frac{3 x-7}{2}=y$?
3. Solve the following equations by using Matrix inversion method $x=\frac{7-3 y}{2}$ and $y=13-6 x$?
4. If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $\mathrm{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ show that $\mathrm{A}^{2}-(\mathrm{a}+\mathrm{d}) \mathrm{A}=(\mathrm{bc}-\mathrm{ad}) \mathrm{I}$. ?
5. If $\mathrm{A}=\left(\begin{array}{ll}2 & 4 \\ 3 & 6\end{array}\right), \mathrm{B}=\left(\begin{array}{cc}-2 & 5 \\ 6 & 1\end{array}\right), \mathrm{C}=\left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right)$. Show that $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$?

2 Marks

1. If $\mathrm{M} \times\left(\begin{array}{ll}1 & 2 \\ 0 & 5\end{array}\right)=\left(\begin{array}{ll}2 & 3\end{array}\right)$ find the order of M and determine the Matrix ' M ' ?
2. If $\mathrm{A}=\left(\begin{array}{cc}1 & 4 \\ 0 & -1\end{array}\right) ; \mathrm{B}=\left(\begin{array}{cc}2 & \mathrm{~m} \\ 0 & \frac{-1}{2}\end{array}\right)$ find ' m ' if $\mathrm{AB}=\mathrm{BA}$.?
3. If $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right) ; \mathrm{B}=\left(\begin{array}{cc}2 & 0 \\ 5 & -3\end{array}\right)$ find the Matrix $\mathrm{B}+\mathrm{A}^{-1}$?
4. If $\left(\begin{array}{cc}3 x+2 y & 6 \\ 2 & 2 x-3 y\end{array}\right)=\left(\begin{array}{cc}5 & 6 \\ 2 & -1\end{array}\right)$ find x, y ?
5. If $\mathrm{A}=\left(\begin{array}{ll}1 & 4 \\ 2 & 1\end{array}\right) ; \mathrm{B}=\left(\begin{array}{cc}-3 & 2 \\ 4 & 0\end{array}\right) ; \mathrm{C}=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ find $\mathrm{A}^{2}+\mathrm{BC}$?

1 Mark

1. If $\mathrm{A}=\left(\begin{array}{ll}1 & 3 \\ 5 & 6\end{array}\right)$ find the value of $\mathrm{A}+\mathrm{A}^{\mathrm{T}}$?
2. If $\mathrm{A}=\left(\begin{array}{cc}2 & 4 \\ -6 & 5\end{array}\right), \mathrm{B}=\left(\begin{array}{cc}4 & -3 \\ 5 & 7\end{array}\right)$ find $3 \mathrm{~A}-2 \mathrm{~B}$?
3. If $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$ find $A+A^{-1}=4 I$?
4. $\left|\begin{array}{cc}\mathrm{d}-2 & 5 \\ -4 & 2\end{array}\right|=0$ find 'd'?
5. If $\mathrm{A}=\left(\begin{array}{cc}2 & -3 \\ 1 & 5\end{array}\right)$ find A^{-1} ?
6. Define Non-singular Matrix
7. If $\mathrm{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ then Find AB ?
