TRIGONOMETRY

1. If $\operatorname{Sin} \theta=5 / 13$ then $\operatorname{Cos}\left(90^{\circ}-\theta\right)=$ \qquad
2. $\operatorname{Cos}^{2} 40^{\circ}+\operatorname{Cos}^{2} 50^{\circ}=$ \qquad (June 09)
3. $270^{\circ}=$ \qquad radians. (June 2009)
4. $\operatorname{Sec} \pi / 3=$ \qquad (June 2009)
5. $\sqrt{\operatorname{Sin}^{2} \theta+\operatorname{Cos}^{2} \theta+\operatorname{Tan}^{2} \theta}=$ \qquad (June 09)
6. $\operatorname{Tan}(90+\theta)=$ \qquad (March 2008)
7. If $\operatorname{Tan} \theta=3 / 4$ then $\operatorname{Sin} \theta=$ \qquad ($0<90^{\circ}$) (March 2008)
8. $\operatorname{Cos} \pi / 3=$ \qquad (March 2008)
9. $\operatorname{Cos} 360^{\circ}=$ \qquad (March 2007)
10. If $\operatorname{Sin} \theta=\operatorname{Cos} 2 \theta$ then $\operatorname{Cot} 3 \theta=$ \qquad (March 2007)
11. If $x=a \operatorname{Cosec} \theta, y=a \operatorname{Cot} \theta$ then $x^{2}-y^{2}=$ \qquad
12. From a ship most head 150 feet heigh, the angle of depression of a boat is observed as 45°. Its distance from ship is \qquad
13. If $\operatorname{Sec} A+\operatorname{Tan} A=p$ then $\operatorname{Sin} A=$ \qquad
\qquad
14. Maximum and minimum values of $\operatorname{Sin} \theta$ is
15. Radians is the unit of measure in \qquad system
16. $(\operatorname{Sec} \theta+\operatorname{Tan} \theta)(1-\operatorname{Sin} \theta) \cdot \operatorname{Sec} \theta=$ \qquad -
17. If $\operatorname{Sec} A+\operatorname{Tan} A=p$ then $\operatorname{Sec} A-\operatorname{Tan} A=$
18. Eliminate θ from $x=\operatorname{Cos} \theta+\operatorname{Sin} \theta, y=\operatorname{Cos} \theta . \operatorname{Sin} \theta$ then the equation is \qquad
19. $\frac{\operatorname{Sin}^{4} \mathrm{~A}-\operatorname{Cos}^{4} \mathrm{~A}}{\operatorname{Sin}^{2} \mathrm{~A}-\operatorname{Cos}^{2} \mathrm{~A}}=$ \qquad
20. $\operatorname{Sin} \theta \cdot \operatorname{Cosec} \theta+\operatorname{Cos} \theta \cdot \operatorname{Sec} \theta+\operatorname{Tan} \theta \cdot \operatorname{Cot} \theta=$ \qquad
21. $\frac{5 \pi^{\mathrm{c}}}{2}=$ \qquad grades.
22. $135^{\circ}=$ \qquad grades.
23. $\frac{3 \pi^{\mathrm{c}}}{5}=$ \qquad degrees.
24. A wheel makes 360° revolution in one minute through \qquad radians does it turn in a one second.
25. The angles of a triangle are in A.P and the greatest angle is three times the least. The angles in circular measure are \qquad
26. The value of $\operatorname{Cos} 0^{\circ}+\operatorname{Sin} 90^{\circ}+\sqrt{2} \operatorname{Sin} 45^{\circ}$ is \qquad
27. $\operatorname{Sin} \theta$ in terms of $\operatorname{Sec} \theta=$ \qquad
28. $\operatorname{Sin} 420^{\circ}=$ \qquad $-$
29. If $\sqrt{3} \operatorname{Tan} \theta=1$ then $\theta=$ \qquad
30. $\frac{\sqrt{\operatorname{Cosec}^{2} \theta-1}}{\operatorname{Cosec} \theta}=$ \qquad
31. 1 radian $=$ \qquad degrees.
32. $\operatorname{Cos}\left(-60^{\circ}\right)=$ \qquad
33. $\operatorname{Tan} \theta+\operatorname{Cot} \theta=2$ then $\operatorname{Tan}^{4} \theta+\operatorname{Cot}^{4} \theta=$ \qquad
34. If $\operatorname{Tan}\left(15^{\circ}+\mathrm{B}\right)=\frac{1}{\sqrt{3}}$ then $\mathrm{B}=$ \qquad
35. If $\operatorname{Tan} \theta=a / b$ then $\operatorname{Sin} \theta=$ \qquad
36. $\operatorname{Sec} \theta(1-\operatorname{Sin} \theta)(\operatorname{Sec} \theta+\operatorname{Tan} \theta)=$ \qquad
37. $\operatorname{Cos} 1^{\circ} \cdot \operatorname{Cos} 2^{\circ} \cdot \operatorname{Cos} 3^{\circ}$. \qquad $. \operatorname{Cos} 179^{\circ}=$ \qquad
38. If $\operatorname{Sin} \mathrm{x}+\operatorname{Sin}^{2} \mathrm{x}=1$ then $\operatorname{Cos}^{2} \mathrm{x}+\operatorname{Cos}^{4} \mathrm{x}=$ \qquad
39. If $\operatorname{Sin} \theta=\operatorname{Cos} \theta$ then $\theta=$ \qquad
40. $\operatorname{Sin}^{2} 9^{\circ}+\operatorname{Sin}^{2} 81^{\circ}=$ \qquad
41. $\frac{\operatorname{Sin}^{2} 81+\operatorname{Sin}^{2} 9}{\operatorname{Tan}^{2} 45}=$
42. $\operatorname{Sin}^{2} 30^{\circ}, \operatorname{Sin}^{2} 45^{\circ}, \operatorname{Sin}^{2} 60^{\circ}$ are \qquad progressions.
43. If $\operatorname{Tan}(A+B)=\sqrt{3}, \operatorname{Tan} A=1$ then $\angle B=$ \qquad
44. $\frac{\operatorname{Sin} 18^{\circ}}{\operatorname{Cos} 72^{\circ}}=$
45. A minute hand of a clock is 3 cm long, the distance moved in 20 minutes is \qquad
46. The value of $(\operatorname{Sin} \theta+\operatorname{Cos} \theta)^{2}+(\operatorname{Sin} \theta-\operatorname{Cos} \theta)^{2}=$ \qquad progressions.
47. The values of $\operatorname{Tan} 30^{\circ}$, $\operatorname{Tan} 45^{\circ}$, $\operatorname{Tan} 60^{\circ}$ are in \qquad
48. $\operatorname{Sec}\left(270^{\circ}-\theta\right)=$ \qquad
49. A straight angle contains \qquad degrees.
50. The side about which a rotation is made is called \qquad
51. Find the length of side of a regular hexagon inscribed in a circle of a radius 2 mt is \qquad
52. 1
53. $\frac{3 \pi^{\mathrm{c}}}{2}$
54. 2
55. $\operatorname{Sec} \theta$
56. $-\operatorname{Cot} \theta$
57. $3 / 5$
58. $1 / 2$
59. 1
60. 0
61. a^{2}
62. 150 mt
63. $\frac{\mathrm{p}^{2}-1}{\mathrm{p}^{2}+1}$
64. $[+1,-1]$
65. Circular
66. 1
67. 1/p
68. $x^{2}-2 y=1$
69. 1
70. 3
71. 500 g
72. 150 g
73. 108°
74. 12π
75. $\frac{\pi^{\mathrm{c}}}{6} \frac{\pi^{\mathrm{c}}}{3}$ and $\frac{\pi^{\mathrm{c}}}{2}$
76. 3
77. $\frac{\sqrt{\operatorname{Sec}^{2} \theta-1}}{\operatorname{Sec} \theta}$
78. $\sqrt{3} / 2$
79. 30°
80. $\operatorname{Cos} \theta$
81. $57^{\circ} .16^{\prime}$
82. $1 / 2$
83. 2
84. 15°
85. $\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}$
86. 1
87. 0
88. 1
89. 45° (or) $\frac{\pi^{\mathrm{c}}}{4}$
40.1
90. 1
41.1
91. A.P
92. $\mathrm{B}=15^{\circ}$
93. 1
$45.44 / 7 \mathrm{~cm}$
94. 2
95. Geometric Progression
96. $-\operatorname{Cosec} \theta$
97. 180°
98. initial side 51.2 mt

Important Questions

5 Marks

1. There are two temples, one on each bank of a river, just opposite to each other. one of the temples A is 40 mts high. AB observed from the top of this temple A , the angle of depression of the top and foot of the other temple B are $12^{\circ} 30^{\prime}$ and $21^{\circ} 48^{\prime}$ respectively. Find the width of the river and the height of the temple B?
2. From the ground and first floor of a building, the angle of elevation of the top of the spire of a church was found to be 60° and 45° respectively. The first floor is 5 mts high. Find the height of the spire?
3. A glider is flying at an altitude of 5000 mts . The angle of depression of the cotrol tower of the air port from the glider is 18°. What is the horizontal distance between the glider and control tower?
4. An aeroplane at an altitude of 2500 mts observe the angles of depression of oppasite points on the two banks of river to be $41^{\circ} 20^{\prime}$ and $52^{\circ} 10^{\prime}$. Find in meters, the width of the river?
4 Marks
5. If $\operatorname{cosec} \theta+\cot =P$ then prove that $\left(P^{2}+1\right) \cos \theta=p^{2}-1(p \neq 0)$?
6. Show that $3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+4\left(\sin ^{6} x+\cos ^{6} x\right)=13$?
7. Eliminate θ from the equations $\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=\mathrm{a}$ and $\mathrm{x} \sin \theta-\mathrm{y} \cos \theta=\mathrm{b}$?
8. Prove that $\frac{\operatorname{Tan} \theta+\sec \theta-1}{\operatorname{Tan} \theta-\sec \theta+1}=\frac{1+\sin \theta}{\cos \theta}$?
9. Find the value of $32 \cot ^{2} \frac{\pi}{4}-8 \sec ^{2} \frac{\pi}{3}+8 \cot ^{3} \frac{\pi}{6}$?

2 Marks

1. Show that $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\operatorname{cosec} \theta+\cot \theta$?
2. If $\cos \theta=\frac{\sqrt{3}}{2}$ and θ is acute find $4 \sin ^{2}+\operatorname{Tan}^{2} \theta$.?
3. Show that $\frac{1-\operatorname{Tan}^{2} \theta}{\cot ^{2} \theta-1}=\operatorname{Tan}^{2} \theta$?
4. If $\operatorname{Tan}(A+B)=\sqrt{3}$ and $\operatorname{Tan} A=1$ What is the measure of B ?
5. If $\operatorname{Tan} \theta+\cot \theta=2$ find the value of $\operatorname{Tan}^{2} \theta+\cot ^{2} \theta$?
6. Prove that $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta=\sec ^{2} \theta \cdot \operatorname{cosec}^{2} \theta$.
7. Prove that $1-\left(\sin ^{6} \theta+\cos ^{6} \theta\right)=3 \sin ^{2} \theta \cdot \cos ^{2} \theta$?
8. Show that $\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1$?

1 Mark

1. Find the value of $\cos 0^{\circ}+\sin 90^{\circ}+\sqrt{2} \sin 45^{\circ}$?
2. If $\cos \theta=\frac{\sqrt{3}}{2}$ then find values of \sin ?
3. Eliminate ' θ ' from $\mathrm{x}=\mathrm{a} \sin \theta, \mathrm{y}=\operatorname{acos} \theta$?
4. Write $\operatorname{Tan} \theta$ value interms of $\cos \theta$?
5. Define Radian?
6. Show that $\frac{1-\operatorname{Tan}^{2} 30}{1+\operatorname{Tan}^{2} 30}=\cos 60^{\circ}$?
7. Express $\frac{5 \pi^{\mathrm{c}}}{6}$ in sexagesimal measure?
8. Convert 200° in to circular measure ?
9. Find the value of $\cot 240^{\circ}$?
10. If $\sec \theta+\operatorname{Tan} \theta=p$ then Find $\sec \theta-\operatorname{Tan} \theta$ Value?
