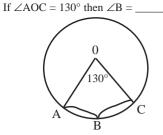
GEOMETRY


1.	$\triangle ABC \sim \triangle PQR$, If $\angle A = 60^{\circ}$, $\angle B = 70^{\circ}$ then $\angle R = $ (June 2009)
2.	If P and Q are the mid points of AB and AC of \triangle ABC, then $\frac{BC}{PQ}$ (June 2009)
3.	Two circles of radii x and y touch each other externally, the distnace between their centres is (June 2009)
4.	The number of common tangents for two externally touching circles is(June 2009)
5.	If $C = 90^{\circ}$ in $\triangle ABC$ and $a = 3$, $b = 4$ then $c = $ (June 2009)
6.	If a parallelogram is cyclic, then it is (March 2008)
~	If $\triangle ABC \sim \triangle PQR$ then $\overline{AB}: \overline{AC} = $
8.	The distance between the centres of two circles is 'd'. If their radii are r_1 and r_2 then the
0	length of transverse common tangent is
	Number of common tangent that can be drawn to two circles touching externally are
	Two circles touch externally at 'O' AB is their direct common tangent, then $\angle AOB = _$ (March 2008)
	PT is a tangent and PAB is a secant of the circle meeting the circle at A and B. If $PA = 4$ cm, $PB = 5$ cm then $PT = $
	A to a circle is perpendicular to the radius through the point of contact. AABC is an abuse triangle abuse angle at B. If AD \downarrow CB than AC ²
	\triangle ABC is an obtuse triangle, obtuse angle at B. If AD \perp CB then AC ² =
	If $\triangle ABC \sim \triangle DEF$ then $\triangle DEF \sim \triangle ABC$. This is property.
	In $\triangle ABC$, $b^2 = a^2 + c^2$ then is a right angle.
	AD is the angle bisector of $\angle A$ in $\triangle ABC$. If BD:DC = 6:7 and AC = 3.5 then AB =
	The side and one diagonal of a rhombus are 5cm and 8cms. respectively, the length of the other diagonal is
	If two circles of radii 3cm and 5cm touch internally, then the distance between their centres iscm
	The angle subtended by major arc at the centre is
20.	Altitude of two similar triangles are in $1:\sqrt{2}$ ratio, then the ratio of their areas is
21.	The perimeter of two similar triangles are in the ratio 1:3. The ratio of their corresponding sides is
	Angle in a semi circle is
23.	The angle between the tangent and the radius at the point of contanct is
	The length of the tangent to a circle with radius 'r' from a point, 'p' which is 'd' cm away from the centre is
25.	The point of intersection of the perpendicular bisectors of any two sides of a triangle is its
26.	The area of a rectangle is 24sq.cm. If its length is 6cm then its peri meter is
27.	In triangle ABC: if a circle drawn on BC as diameter passes through A, the triangle ABC is
	If two circles touch externally, then the number of direct common tangents are
	P is a point outside a circle and PT is a tangent to the circle PAB a secant, cuts the circle at A and B then PA.PB =
	Angle in a semicircle at the centre is
	Tangents drawn to a circle from an external point are
	In a square, the diagonal is times to its side.
	In a \triangle ABC, the sides are 6,10,8 then it is a triangle.
	In a $\triangle ABC$, AD is the median drawn to BC then $AB^2 + AC^2 =$
	For two concentric circles., no.of tangents is
	The number of circles that can be drawn passing through three points which are not collinear is
	If two chords are subtending equal angles at the centre of a circle, they are
	In $\triangle ABC$ 'B' is right angle triangle and BD $\perp AC$ then $BD^2 =$
	The point which is equidistance from the vertices of a triangle is
	If a line divides any two sides of a triangle in the same ratio then the line is to the thrid side.
41.	$\triangle ABC, \angle B < 90^{\circ}$ and $AD \perp BC$ then
	$AC^2 = AB^2 + BC^2$
	If ABCD is a cyclic quadrilateral then $\angle A + \angle C = $
43.	Angles in the same segment of a circle are
11	The height of an equilateral triangle with side $2\sqrt{3}$ is
45	'O' is the centre of a circle, If $\angle BOA = 140^\circ$ and $\angle COA = 100^\circ$ then $\angle BAC = _$
	A B C

46. Basic proportionality theorem is known as _____ theorem.

47. In the below circle the chords AB and CD intersects at 'O' and AO = 8, OB = 6, CO = 4 then OD =_____

48. 'O' is the centre of the circle.

49. The point of concurrence of the medians of a triangle is _____

 1.50° 2.2:1 3. x+y 4.3 5.5 6. Rectangle 7. PQ:PR 8. $\sqrt{d_2 - (r_1 + r_2)^2}$ 9.3 10. 90° 11. $2\sqrt{5}$ 12. Tangent 13. AB²+BC²+2BC.BD 14. Symmetric 15. ∠B 16.3 17.6 cm 18. 2 cm 19. >180° 20. 1:2 21.1:3 22. right angle (90°) 23. 90° 24. $\sqrt{d^2 - r^2}$ 25. Circum center 26. 20 cm 27. right angle triangle 28.2 29. PT² 30. 180° 31. equal 32. $\sqrt{2}$ 33. right angle triangle 34. 2(AD²+BD²)(or)2(AD²+DC²) 35. Zero 36. One 37. Equal 38.AD.DC 39. Circum center 40. Parallel 41. 2BC.BD 42. 180° 43. Equal 44. 3cm 45. 60° 46. Thales theorem 47.12 48. 115° 49. centroid

5 Marks

Important Questions

KEY

1. Construct a cyclic quadrilateral ABCD where $AC = 4 \text{ Cm} \angle ABC = 57^{\circ}$, AB = 1.5 Cm and AD = 2 cm?

2. Construct a triangle ABC in which. AB = 4.4 cm $\angle c = 65^{\circ}$ and median through c = 2.7 cm.?

3. Construct a triangle ABC in which Bc = 7cm, $\angle A = 70^{\circ}$ and foot of the perpendicular D on BC from A is 4.5cm away from B?

4 Marks

- 1. State and prove Basic proportionality theorem?
- 2. State and prove pythagorean theorem?
- 3. State and prove Alternate segment theorem?
- 4. State and prove vertical angle Bisector theorem?
- 5. State and prove converse of Alternate segment theorem?
- 6. State and prove converse of Basic proportinality theorem?

2 Marks

- 1. $\angle B$ of $\triangle ABC$ is an acute angle and AD \perp BC. Prove that $AC^2 = AB^2 + BC^2 2BC.BD$?
- 2. ABCD is rhombus, prove that $AB^2 + BC^2 + CD^2 + DA^2 = AC^2 + BD^2$?
- 3. Prove that the line Joining the mid points of two sides of a triangle is parallel to 3rd side?
- 4. Prove that the area of an equilateral triangle

at side 'a' is
$$\frac{\sqrt{3}}{4}a^2$$
.?

- 5. Write two properties when two polygons are said to be similar to each other?
- 6. In $\triangle ABC$, AD is drawn perpendicular to BC, then prove that $AB^2-BD^2 = AC^2 CD^2$?
- 7. If PAB is a secant to a circle intersecting the circle at A and B and PT is tangent segment then $PA.PB = PT^2$?

1 Mark

- 1. If the radii 5 cms and 6cms of two circles touch externally Find their direct common tangents?
- 2. Define converse of the pythagorean theorem?
- 3. Define Appolonius theorem?
- 4. A ladder 25 cm. long reches a window of a building 24 cm. above the ground. Determine the distance of the fort of ladder from the building?
- 5. State two properties, when two triangles are said to be similar?
- 6. State the converse of Alternate segment theorem?
- 7. There is a circle of radius 3cm. From a point 'P' which is at a distance of 5 cm. from the centre of a circle, a tangent is dr awn to the circle. Find the length of the tangent?
- 8. Two circles radii Terms 9cms touch internally .Find the distance between their centres?