PROGRESSIONS

1. If $\mathrm{A}, \mathrm{G}, \mathrm{H}$ denote the A.M. G.M. and H.M of two positive numbers then their descending order is \qquad
2. If there are ' n ' Arithmetic means between ' a ' and ' b ' then the common difference $d=$ \qquad
$1, \frac{1}{3}, \frac{1}{9},----\infty$ is \qquad (June 2009)
3. Sum to infinity terms of the G.P. ${ }^{1} 3 \prime 9$
4. $1^{3}+2^{3}+3^{3}+---------+10^{3}=$
5. $1^{3}+2^{3}+3^{3}+-----------+10^{3}=$ \qquad
6. If there are ' n ' G.M's inserted between a and b then the common ratio ' r ' is \qquad
7. The $\mathrm{n}^{\text {th }}$ term of the series $1.2+2.3+3.4+-------$ is \qquad (March 2008)
8. If a, b, c are in G.P then $a / b=$ \qquad
9. If $\mathrm{t}_{\mathrm{n}}=\frac{\mathrm{n}}{\mathrm{n}+1}$ then $\mathrm{t}_{2008}=$ \qquad
10. The G.M of 3 and 27 is \qquad
11. If $3,4,6$ are in H.P then the fourth term is \qquad (March 2008)
12. If the sum of first ' n ' natural numbers is 66 then ' n ' $=$ \qquad
13. $1+2+3+-------+100=$ \qquad
14. If x, y, z are in A.P then $2 y=$ \qquad
15. The sum of ' n ' terms of the series $(a+1)+(a+2)+(a+3)+-----$ is \qquad (June 2010)
16. $\mathrm{n}^{\text {th }}$ term of A.P. is $\left(2 \mathrm{n}^{2}+2 \mathrm{n}+3\right)$ then the second term is \qquad (March 2010)
17. The arithmetic mean of $(a-b)^{2}$ and $(a+b)^{2}=$ \qquad $-$
18. In a H.P.

$$
\frac{1}{x+3}, \frac{1}{x}, \frac{1}{x-3},------ \text { then } \frac{1}{x-21} \text { is }
$$

\qquad term.
18. If a_{1}, a_{2}, a_{3}, ------ and $b_{1}, b_{2}, b_{3}, \ldots \ldots \ldots$. are in A.P then $a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}$ are in \qquad progression.
19. Sum of the first ' n ' odd natural numbers is \qquad
20. The number of multiples of 9 between 1 and 1000 is \qquad
21. If $\frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, \frac{1}{\mathrm{c}}$ are in H.P then $\mathrm{c}=$ \qquad
22. The 10th term of the series
$x+\frac{4 x}{3}+\frac{5 x}{3}+-----$ is \qquad
23. $\mathrm{K}+2,4 \mathrm{~K}-6$ and $3 \mathrm{~K}-2$ are in A.P. then $\mathrm{K}=$ \qquad
24. The $n^{\text {th }}$ term of A.P is $3 n+1$ and the sum of ' n ' terms is \qquad
25. If $\frac{-2}{7} \times \frac{16}{7}$ are in A.P. then $x=$ \qquad
26. The first term of a G.P is 3 and $6^{\text {th }}$ term is 96 then its common ratio is \qquad
27. If a, b, c are in A.P then $b+c, c+a, a+b$ are in \qquad
28. The arithmetic mean of $\frac{1}{a}, \frac{1}{b}$ is \qquad
29. The two geometric means inserted between 2,16 are \qquad
30. g_{1}, g_{2}, g_{3} are G.M's between a and b then $g_{1} g_{3}=$ \qquad
31. In an A.P $S_{n}=2 n^{2}+5 n$ then $t_{4}=$ \qquad
32. The ' n 'th term of G.P is $2(0.2)^{n-1}$ its third term is \qquad
33. The first term of an A.P is -1 and common difference is -3 then $12^{\text {th }}$ term is \qquad
34. $1+8+27+--------n^{3}=$ \qquad
35. If $\mathrm{A} \cdot \mathrm{M}=2$, $\mathrm{G} \cdot \mathrm{M}=8$, then $\mathrm{H} \cdot \mathrm{M}=$ \qquad
36. If TanA, TanB, TanC are in A.P. then $\operatorname{Cot} A, \operatorname{Cot} B, \operatorname{Cot} C$ are in \qquad progression.
37. $\frac{p}{q}$ form of $1 . \overline{56}$ is \qquad
38. If a,b,c are 3 consecutive terms of an A.P then $K^{a}, \mathrm{~K}^{\mathrm{b}}, \mathrm{K}^{\mathrm{c}}$ are 3 consecutive terms of \qquad
39. The relation between $\Sigma \mathrm{n} \& \Sigma \mathrm{n}^{3}$ is \qquad
40. The $n^{\text {th }}$ term of $13,8,3,-2,-----$ is \qquad
41. If a, b are positive numbers then A.M, G.M, H.M, are in \qquad progression.
42. Sum of the squares of the first ' n ' natural numbers is \qquad
43. In an A.P, if 4 times of 4 th term is equal to 5 times of 5 th term then \qquad term is zero.
44. The $\mathrm{n}^{\text {th }}$ term of the series $\mathrm{a}, \operatorname{ar}^{2}, \mathrm{ar}^{2}, \mathrm{ar}^{3}-\cdots----$ is \qquad
45. The sum of ' n ' terms of the G.P $3,3^{2}, 3^{3}$, ------ is 120 then $n=$ \qquad
46. $7^{\text {th }}$ term of the series $1, \frac{-1}{2}, \frac{1}{4},--$ is
47. Sum of the 5 terms in the series $1.2+2.3+3.4+------$ is \qquad
48. If $|r|<1$, then the sum to infinite terms of the series $a+a r+\mathrm{ar}^{2}+-----+\infty=$ \qquad
49. The $\mathrm{n}^{\text {th }}$ term of an A.P is $2 \mathrm{n}+5$ then the common difference is \qquad
50. If ' a ' is the first term and ' d ' is the common difference of an A.P then $15^{\text {th }}$ term of corresponding H.P is \qquad -.
51. In a G.P $\mathrm{S}_{\mathrm{n}}=\frac{\left(1-(-2)^{\mathrm{n}}\right)}{3}$ then $\mathrm{t}_{\mathrm{n}}=$ \qquad

1. $\mathrm{A} \geq \mathrm{G} \geq \mathrm{H}$

2. $\frac{\mathrm{b}-\mathrm{a}}{\mathrm{n}+1}$
3. $3 / 2$
4. 3025
5. $\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$
6. $\mathrm{n}(\mathrm{n}+1)$
7. b/c
8. 2008/2009
9. 9
10. 12
11. 11
12. 5050
13. $(\mathrm{x}+\mathrm{z})$
14. $\frac{\mathrm{n}}{2}(2 \mathrm{a}+(\mathrm{n}+1))$
15. 15
16. $a^{2}+b^{2}$
17. $9^{\text {th }}$
term
18. Arithmetic
19. n^{2}
20. 111
21. $2 \mathrm{~b}-\mathrm{a}$
22. 4 x
23. $k=3$
24. $\frac{3 n^{2}+5 n}{2}$
25. $x=1$
26. 2
27. Arithmetic progression
28. $\frac{a+b}{2 a b}$
29. $4 \& 8$
30. g_{2}^{2}
31. 19
32. 0.08
33. -34
34. $\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4}$
35. 32
36. Harmonic
37. 155/99
38. Geometric
39. $\Sigma \mathrm{n}^{3}=(\Sigma \mathrm{n})^{2}$
40. $18-5 \mathrm{n}$
41. Geometric
42. $\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
43. $9^{\text {th }}$ term
44. a. $\mathrm{r}^{\mathrm{n}-1}$
45. 4
46. 1/64
47. 70
48. $\mathrm{a} / 1-\mathrm{r}$
49. 2
50. $\frac{1}{a+14 d}$
51. $(-2)^{\mathrm{n}-1}$

Important Questions

4 Marks

1. If the sum of the first ' n ' natural numbers is s_{1}, and that of their squares s_{2} and cubes s_{3}, show that $9 S_{2}^{2}=S_{3}\left(1+8 S_{1}\right)$?
2. Find the sum of ' n ' terms of the series $0.5+0.55+0.555+----\mathrm{n}$ terms?
3. Insert 6 H.M's between $2 / 3$ and $2 / 31$.
4. The A.M,G.M and $H . M$ of two numbers are A, G, H respectively show that $A \geq G \geq H$?
5. Find the sum to ' n ' terms of the series $1.3+3.5+5.7+----$ -
6. If 7 times the $7^{\text {th }}$ term of an A.P is equal to 11 times the $11^{\text {th }}$ term, show that the $18^{\text {th }}$ term of it is zero?

2 Marks

1. Insert 4 arithmetic means between 3 and 33
2. The $8^{\text {th }}$ term of an A.P is 17 and the $19^{\text {th }}$ term is 39 Find $25^{\text {th }}$ term?
3. If $\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3}$ are three geometric means between m and n . Show that $\mathrm{g}_{1} \mathrm{~g}_{3}=\mathrm{g}_{2}^{2}=\mathrm{mn}$
4. Determine the $12^{\text {th }}$ term of a G.P where $8^{\text {th }}$ term is 192 and common ratio is 2 ?
5. Which term of the A.P. $10,8,6$. \qquad is -28 ?
6. Find the sum to ' n ' terms of the series $51+49+47+$ \qquad .?
7. Find the 15 th term of the A.P $(x+y)$, (x-y),(x-3y), \qquad ...?

1 Mark

1. Find the sum to infinity of the G.P.?
$\frac{-3}{4}, \frac{3}{16}, \frac{-3}{64}$ \qquad
2. Find the $\mathrm{n}^{\text {th }}$ term of G.P $100,-110,121, \ldots$?
3. If $\mathrm{K}+2,4 \mathrm{~K}-6$ and $3 \mathrm{~K}-2$ are in A.P find K ?
4. In Arithmetic progression $\mathrm{a}=-3030,1=-1530$ and $\mathrm{n}=51$ find 5_{n} ?
5. Find the $17^{\text {th }}$ term in a series if $\mathrm{t}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+3)}{(\mathrm{n}+2)}$?
6. Find the $12^{\text {th }}$ term of the progression $10,17,24$ \qquad ...?
7. First term in A.P is ' a ' and common difference is ' d ' write general term of A.P.?
8. In G.Pa $=2, \mathrm{r}=\sqrt{2}$ find s_{12} ?
9. Find the Harmonic mean of 6 and 12 .?
10. Write the fractional form of 0.423 ?
