POLYNOMIALS OVER INTEGERS

1. Product of the roots of equation
$x^{2}-(a+b) x=c$ is \qquad
2. If α, β are the roots of the equation
$2 x^{2}-9 x+8=0$ then $\alpha+\beta=$ \qquad
3. The line $y=m x+c$ cuts the y-axis at \qquad _ quardrants (March 2008, Jun 2010)
4. The curve $x=m y^{2}(m>0)$ lies in \qquad
5. If the co-efficient of x^{2} in the expansion of $(1+x)^{n}$ is 28 then $n=$ \qquad
6. If $f(x)=a_{0} x+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+$ \qquad If $a_{0}+a_{2}+a_{4}+----=a_{1}+a_{3}+a_{5}+----\quad$ then the factor of $f(x)$ is \qquad
7. If $15 C_{r-1}=15 C_{r+2}$ then $r=$ \qquad
8. If $|3 x-2|=10$ then the positive value of ' x ' is \qquad
9. $\mathrm{a}^{2}+\mathrm{bx}+\mathrm{c}=0$ is quadratic equation if
$b^{2}-4 a c<0$ then the roots are \qquad
10. The no.of terms of the expansion $(1+x)^{n+1}$ is 6 then $n=$ \qquad
11. The sum of the roots of $2 x^{2}-K x+4=0$ is -1 then $K=$ \qquad
12. $(x-1)$ is a factor of $2 x^{3}-5 x^{2}+K x+7$ then $K=$ \qquad
13. The last term in the expansion of $\left(1-\frac{1}{\sqrt{x}}\right)^{8}$ is \qquad
14. The quadratic equation in ' x ' where roots are $2,-3$ is \qquad
15. If $x^{2}-3 x+2>0$ then x is \qquad -
16. The solution set which satisfies the inequation $x^{2}-4 x+3<0$ is \qquad
17. The ineaquation with solution set $1<x<3$ is \qquad (June 2008)
18. Product of the roots of $2 x^{2}+3 x-2=0$ is \qquad
19. The condition for $x^{y}+y^{n}$ is exactly divisible by $(x+y)$ then $n=$ \qquad
20. If $(2, K)$ lies on $y=2 x^{2}-3$ then $K=$ \qquad
21. The two factors of $x^{3}+3 x^{2}-x-3$ are $(x-1)(x+1)$ then the other factor is \qquad
22. The rationalising factor of $a^{1 / 3}-b^{1 / 3}$ is \qquad
23. Sum of the binomial co-efficients of the expansion $(x+y)^{4}$ is \qquad
24. If $(x-y)$ is a factor of $x^{n}-y^{n}$ then n is \qquad (June 2007)
25. $Y=m x^{2}(m>0)$ is symmetric about ___axis.
26. The roots of $2 x^{2}+K x+2=0$ are equal then $K=$ \qquad
27. The standard form of second degree homogenous equation in two variables x and y is \qquad
28. $x^{3}-2 x^{2}+4 x-5$ is divided by $x-2$ then the remainder is
29. If $f(x)$ is divided by $a x+b$ then the remainder is \qquad (March 2010)
30. Second term in the expansion of $\left(x-\frac{1}{x}\right)^{4}$ is \qquad
31. If the roots of the equation $\mathrm{Px}^{2}+\mathrm{qx}+\mathrm{r}=0$ equal then the condition is \qquad
32. To solve graphically the roots of $x^{2}+2 x-15=0$ we draw $y=x^{2}$ and \qquad
33. The other name of pascal triangle is \qquad
34. If $(x+y, 1)=(3, y-x)$ then $(x, y)=$ \qquad
35. The descrimenent of $4 x^{2}-5 x+4=0$ is \qquad
36. If $f\left(\frac{b}{a}\right)=0$ then factor of $f(x)=$ \qquad
37. The sum of the co-efficients of the quadratic expression is zero then \qquad is a factor to it (June 2010)
38. The graph of $y=x^{2}$ is a
39. If 2 is a root of the equation $x^{2}-p x+q=0$ and $p^{2}=4 q$ then the other root is \qquad
40. The roots of $a x^{2}+b x+c=0$ are \qquad -
41. If $x^{3}-3 x^{2}+4 x-2$ is divided by $x-1$, then the quotient is \qquad (June 2009)
42. The nature of the roots of $4 x^{2}-5 x+4=0$ is \qquad
43. The product of the roots of $\sqrt{3} x^{2}+9 x+6 \sqrt{3}=0$ is
44. $\mathrm{n}_{\mathrm{C}_{0}}=$ \qquad (March 2009)
45. $(-2,3) \in$ \qquad quadrant (March 2009)
46. The sum of the roots of $x^{2}-3 x+7=0$ is
47. The discriminant of the quadratic equation $2 x^{2}-7 x+3=0$ is \qquad (June 2008)
48. If $\sqrt{x+1}=x$ then $x=$ June 2008)
49. The product of the roots of $\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=0$ \qquad (June 2008)
50. Middle term in the expansion of $\left(\frac{x}{y}+\frac{y}{x}\right)^{8}$ is \qquad
51. If $(a+b, 1)=(5, a-b)$ then $2 a+3 b=$ \qquad (March 2006)
52. $(x+1)$ is a factor to $a x^{4}+b x^{3}+c x^{2}+d x+e$ then the condition is \qquad
53. If $|x| \leq a$ then the solution set is \qquad
54. The middle term of $\left(\frac{x}{y}+\frac{y}{x}\right)^{4}$ expansion is \qquad (March 2010)
55. Sum of the number and its reciprocal is $17 / 4$ then the number is \qquad
56. Expand $\sum \mathrm{a}^{2}(\mathrm{~b}-\mathrm{c})=$ \qquad

KEY

POLYNOMIALS:

Important Questions

5 Marks

1. Using graph of $y=x^{2}$, solve $x^{2}-4 x+3=0$
2. Draw the graph of $y=x^{2}+5 x+6$ and find the solution of $x^{2}+5 x+6=0$?

4 Marks

1. If $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ is exactly divisible by $(\mathrm{x}-1),(\mathrm{x}-2)$ and leaves remainder 6 when divided by $(\mathrm{x}+1)$. find a, b and c ?
2. Resolve in to factors of the polynomial $3 x^{4}-10 x^{3}+5 x^{2}+10 x-8 ?$
3. Find the independent term of ' x ' in the expansion of $\left(6 x^{2}-\frac{5}{x^{2}}\right)^{8}$?
4. Find a quadratic function is in ' x ' such that when it is divided by ($x-1$),(x-2) and ($x-3$) leaves remainders 1,2 and 4 respectively.

2 Marks

1. Find the value of ' m ' in order that $x^{4}-2 x^{3}+3 x^{2}-m x+5$ may be exactly divisible by $(x-3)$?
2. Find the roots of $x^{2}+x(c-b)+(c-a)(a-b)=0$.
3. Find the middle term of the expansion of
$\left(3 \mathrm{x}-\frac{1}{2 \mathrm{x}}\right)^{\prime}$?
4. Solve the inequation $x^{2}-6 x+8>0$?
5. The difference of two numbers is 5 and their product is 84 find them?

6 . Find the $5^{\text {th }}$ term in the expansion $\left(2 x+\frac{1}{3 y}\right)^{8}$

1 Mark

1. Define mathematical induction?
2. Comment up on the roots of a quadratic equation $3 x^{2}-7 x+2=0$?
3. Find the quadratic equation having roots $1+\sqrt{2}$ and $1-\sqrt{2}$?
4. Find the value of K so that $x^{3}-3 x^{2}+4 x+K$ is exactly divisible by $x-2$?
5. Find the sum and product of the roots of the equation $\sqrt{3} x^{2}+9 x+6 \sqrt{3}=0$?
6. Define Remainder theorem?
7. The product of two consecutive numbers is 72 . Find the number?
8. Write factor theorem?
9. Expand $\sum \mathrm{a}(\mathrm{a}+\mathrm{b}-\mathrm{c})$?
10. Write General term of expression $(x+y)^{\mathrm{n}}$?
