1. If $f(A)=B$ then $f: A \rightarrow B$ is $a / a n$ \qquad function (June 2009)
Let $f: R \rightarrow R$ be defined by $f(x)=3 x+2$, then the element of the domain of ' f 'which has 11 as image is \qquad
Range of a constant function is a \qquad set.
If $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ is defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}+1$, then the range of ' f ' is \qquad (June 2009)
If $f(x)=x \forall x$, then f is $a / a n$ \qquad function (June 2009), (March 2008)
If $f(x)=x^{2}-x+6$ then $f(4)=$ \qquad (March 2008)
$f(x)=x^{2}+4 x-12$, what are the zeros of $f(x)$ \qquad (March 2008)
$f(x)=x^{3}, g(x)=x^{2}-2$ for $x \in R$ then $(g o f)(x)=$ \qquad (March 2008)
$f(x)=x^{2}+2 x-K$ and if $f(2)=8$ then $k=$ \qquad (June 2007)
2. $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is an objective and if $\mathrm{n}(\mathrm{A})=4$ then $\mathrm{n}(\mathrm{B})=$ \qquad (June 2007)
3. If $f(x)=x$ then the function f is \qquad (June 2010)
. A function is one - one and on-to then the function is \qquad (June 2010)
4. If $\mathrm{f}=\{(1,2),(2,3),(3,1)\}$ then $\mathrm{f}^{-1}(2)=$ \qquad
. If f is Identity function $\mathrm{f}(5)=$ \qquad function.
5. If $f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow x_{1}=x_{2}$ then f is \qquad
6. $f: A \rightarrow B$ and $f(x)=c \forall x \in A$ then f is \qquad
\qquad
7. If $f: A \rightarrow B$ such that $f(A) \subset B$ then f is
8. $\mathrm{f}=\{(1,2),(2,3),(3,4)\}, \mathrm{g}=\{(2,5),(3,6),(4,7)\}$ then $\mathrm{fog}=$ \qquad
9. The domain of the function $\frac{1}{\sqrt{\mathrm{x}^{2}-16}}$ is
10. $f: A \rightarrow B$ and $f(x)=2 x+5$ then the inverse of f is \qquad
11. If $f(x)=\sqrt{x}$ then $[f o(f o f)](x)=$ \qquad
The range of constant function is \qquad
If $\mathrm{f}=\{(1,2),(2,3),(3,4),(4,1)\}$ then fof $=$ \qquad
. If $f(x)=a x+b$ and $f(2)=6$ then the relation between a and b is \qquad
$f(x)=x+2$ and $g(x)=2 x-1$ then
$f(1)-g(-1)=$ \qquad -
12. If a function is both one-one and on-to then the function is \qquad
13. $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a function then B is called \qquad -
14. $f: A \rightarrow B$ such that $f(A)=B$ then f is \qquad
15. $f: A \rightarrow B$ and $B \subseteq R$ then f is \qquad
16. A constant function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ is defined by
$\mathrm{f}(\mathrm{x})=5$ then $\mathrm{f}(15)=$ \qquad
17. $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}-1}{\mathrm{x}-1}(\mathrm{x} \neq 1)$ then $\mathrm{f}(\mathrm{x})+\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)$
18. The range of the function $f=\{(a, x),(b, y),(c, z)\}$ is \qquad
19. The inverse of a function will be a function again if it is
20. If $\mathrm{f}: \mathrm{x} \rightarrow \log _{2} \mathrm{x}$ then $\mathrm{f}(16)=$ \qquad
21. The set builder form of
$\mathrm{R}=\{(1,3),(2,4),(3,5)\}$ is \qquad
22. $\mathrm{f}^{-1}(\mathrm{x})=\mathrm{x}-3, \mathrm{~g}^{-1}(\mathrm{x})=\mathrm{x}-1$ then $(\mathrm{fog})^{-1}=$ \qquad
23. What is the zeros of the adjacent function is \qquad

24. Number of elements in $\{3,5,7,9\} \times\{4,6,8\}$ is \qquad
25. A function $f: A \rightarrow B$ is said to be \qquad function, if for all $y \in B$ there exists $x \in A$ such that $f(x)=y$.
26. If $f(x)=2-x, g(x)=3 x+2$ then $(f o g)(2)=$ \qquad
27. $f(x)=x+1$, then $3 f(2)-2 f(3)=$ \qquad
28. $f=\{(x, 1004) / x \in N\}$ then f is
29. The condition to define gof is
\qquad
30. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(\mathrm{x})=6 \mathrm{x}+5$ then $\mathrm{f}^{-1}(\mathrm{x})=$ \qquad
31. If $f(x)=2 x-3$ the value of $\frac{f(x+h)-f(x)}{h}$ is \qquad KEY

1. Onto	2.3	3. Singleton set	4. $\{2,3,4,5-\cdots--\}$	5. Identity	6.18	7. -6 (or) 2

FUNCTIONS: Important Questions

4 Marks

1. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$. find $\mathrm{f}^{-1}(4)$,

$$
\left\{\mathrm{f}^{-1}(\mathrm{x}): 2 \leq \mathrm{x} \leq 3\right\},\left\{\mathrm{f}^{-1}(\mathrm{x}): \mathrm{x} \leq 5\right\}
$$

2. Let $\mathrm{f}, \mathrm{g}, \mathrm{h}$ be functions, $\mathrm{f}(\mathrm{x})=\mathrm{x}+2$, $\mathrm{g}(\mathrm{x})=3 \mathrm{x}-1$ and $\mathrm{h}(\mathrm{x})=2 \mathrm{x}$ show that ho(gof)=(hog)of ?
3. If a function $f: R \rightarrow R$ is defined by $f(x)=3 x-5$, then find a formula that defines the inverse function f^{-1} ?
4. Let f be given by $\mathrm{f}(\mathrm{x})=\mathrm{x}+2$ and f has the domain $\{\mathrm{x}: 2 \leq \mathrm{x} \leq 5\}$ find f^{-1} and its domain and Range?

2 Marks

1. Let $f: R-\{2\} \rightarrow R$ be defined by

$$
f(x)=\frac{2 x+1}{x-2} \text { show that } f\left(\frac{2 x+1}{x-2}\right)=x . ?
$$

2. Define one-one function show that $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-2 ; \mathrm{x} \in \mathrm{N}$ is one -to-one.?
3. If $f(x)=x^{2}+2 x+3, x \in R$ find the volue of

$$
\frac{\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})}{\mathrm{h}} \text { when } \mathrm{h} \neq 0 . ?
$$

4. $f: R \rightarrow R$ be defined by $f(x)=6 x+5$, find $f^{-1}(x)$.?
5. $f(x)=x+2, g(x)=x^{2}-3$ find
1) (gof) (-2)
2) $(f \circ g)(-2)$?

1 Mark

1. Define on-to function?
2. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and let f have an inverse function $\mathrm{f}^{-1}: \mathrm{B} \rightarrow \mathrm{A}$. state the properties of f for which its inverse exists.
3. Define equal functions?
4. Let $f=\{(1,2),(2,3),(3,4)\}$ and $g=\{(2,5),(3,6),(4,7)\}$ find gof?
5. Define a bijection?
6. Let $\mathrm{f}: \mathrm{R}-\{1\} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=1+2 \mathrm{x}, \mathrm{g}(\mathrm{x})=3-2 \mathrm{x}$, find (fog) (3)?
