FUNCTIONS

- 1. If f(A) = B then $f: A \rightarrow B$ is a/an ______ function (June 2009)
- 2. Let f: $R \rightarrow R$ be defined by f(x) = 3x+2, then the element of the domain of 'f' which has 11 as image is _____
- 3. Range of a constant function is a _____ set.
- 4. If $f: N \rightarrow N$ is defined by f(x) = x+1, then the range of 'f' is (June 2009)
- 5. If $f(x) = x \forall x$, then f is a/an _____ function (June 2009), (March 2008)
- 6. If $f(x) = x^2 x + 6$ then f(4) = _____ (March 2008)
- f(x) = x² + 4x 12, what are the zeros of f(x) _____ (March 2008)
 f(x) = x³, g(x) = x²-2 for x∈ R then (gof)(x) = _____ (March 2008)
- 9. $f(x) = x^2 + 2x K$ and if f(2) = 8 then k =_____ (June 2007)
- 10. f : A \rightarrow B is an objective and if n(A) = 4 then n (B) = _____ (June 2007)
- 11. If f(x) = x then the function f is _____ (June 2010)
- 12. A function is one one and on-to then the function is _____ (June 2010)
- 13. If $f = \{(1,2),(2,3),(3,1)\}$ then $f^{-1}(2) = _$
- 14. If f is Identity function $f(5) = _$
- 15. If $f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2$ then f is _____ function.
- 16. f : A \rightarrow B and f (x) = c \forall x \in A then f is ____
- 17. If $f: A \rightarrow B$ such that $f(A) \subset B$ then f is _____
- 18. $f = \{(1,2), (2,3), (3,4)\}, g = \{(2,5), (3,6), (4,7)\}$ then fog = _____

19. The domain of the function
$$\frac{1}{\sqrt{x^2 - 16}}$$
 is _____

- 20. f : A \rightarrow B and f(x) = 2x +5 then the inverse of f is
- 21. If $f(x) = \sqrt{x}$ then [fo(fof)](x) = _____
- 22. The range of constant function is
- 23. If $f = \{(1,2), (2,3), (3,4), (4,1)\}$ then fof = _____
- 24. If f(x) = ax + b and f(2) = 6 then the relation between a and b is _____
- 25. f(x) = x + 2 and g(x) = 2x-1 then
- f(1) g(-1) =____
- 26. If a function is both one-one and on-to then the function is _____
- 27. f : A \rightarrow B is a function then B is called
- 28. f : A \rightarrow B such that f (A) = B then f is
- 29. f : A \rightarrow B and B \subseteq R then f is _____
- 30. A constant function $f : N \rightarrow N$ is defined by f(x) = 5 then f(15) =_____

31.
$$f(x) = \frac{x-1}{x-1} (x \neq 1)$$
 then $f(x) + f\left(\frac{1}{x}\right)$ _____

- 32. The range of the function $f = \{(a,x), (b,y), (c,z)\}$ is _____
- 33. The inverse of a function will be a function again if it is _____
- 34. If $f : x \to \log_2 x$ then f(16) =_____
- 35. The set builder form of
- $R = \{(1,3), (2,4), (3,5)\}$ is _____
- 36. $f^{-1}(x) = x-3$, $g^{-1}(x) = x-1$ then $(fog)^{-1} =$ ____
- 37. What is the zeros of the adjacent function is _____

- 38. Number of elements in $\{3,5,7,9\} \times \{4,6,8\}$ is _____
- 39. A function $f: A \rightarrow B$ is said to be ______ function, if for all $y \in B$ there exists $x \in A$ such that f(x) = y.
- 40. If f(x) = 2-x, g(x) = 3x + 2 then (fog) (2) = ____
- 41. f(x) = x+1, then 3f(2)-2f(3) =_____
- 42. $f = \{(x, 1004) | x \in N\}$ then f is _____
- 43. The condition to define gof is _
- 44. Let $f : R \to R$, f(x) = 6x+5 then $f^{-1}(x) = _$

45. If
$$f(x) = 2x - 3$$
 the value of $\frac{f(x+h) - f(x)}{h}$ is _____

KEY

1. Onto	2.3	3. Singleton set	4. {2,3,4,5}	5. Identity
9.0	10.4	11. Identity function	12. bijective	
16. constant function		17. Into function	18. does not find	19. x > 4

6.18 7.-6 (or) 2 13.1 14.5

8. $(x^{6}-2)$ 15. one-one

20. $\frac{x-5}{2}$	21. $\sqrt[8]{x}$ or $x^{1/8}$	22. Singleton set	23. {(1,	3) (2,4)(3,1	1) (4,2)}	24. 2a+b =	= 6 25.6	5 26. bijective
27. co-domain	28. onto function	29. real valued	30. 5	31.0	32. {x,y,	z}	33. bijective	34.4
35. {(x,y)/ y=x+2,	$x \in N, x \leq 3$	36. (x-4)	37. {-3,	-1,1,3}	38.12		39. Onto	406
41.1	42. Constant functi	on 43. The	range of f	is equal to	the domain	n of g.		
44. $\frac{x-5}{6}$	45.2							

FUNCTIONS: Important Questions

4 Marks

1. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x + 3. find $f^{-1}(4)$,

$$\left\{ f^{-1}(x) : 2 \le x \le 3 \right\} \left\{ f^{-1}(x) : x \le 5 \right\}$$

2. Let f,g,h be functions, f(x) = x+2, g(x) = 3x-1 and h(x)=2x show that ho(gof)=(hog)of?

3. If a function $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 3x-5, then find a formula that defines the inverse function f^{-1} ?

4. Let f be given by f(x) = x+2 and f has the domain $\{x : 2 \le x \le 5\}$ find f⁻¹and its domain and Range?

2 Marks

1. Let $f : R - \{2\} \rightarrow R$ be defined by

$$f(x) = \frac{2x+1}{x-2}$$
 show that $f\left(\frac{2x+1}{x-2}\right) = x$.?

2. Define one-one function show that f(x) = 3x - 2; $x \in N$ is one -to-one.?

3. If $f(x) = x^2 + 2x + 3$, $x \in R$ find the volue of

$$\frac{f(x+h)-f(x)}{h}$$
 when $h \neq 0.?$

4. f : R \rightarrow R be defined by f(x) = 6x + 5, find f⁻¹ (x).?

5. f(x) = x + 2, $g(x) = x^2 - 3$ find

1 Mark

1. Define on-to function?

- 2. Let $f: A \to B$ and let f have an inverse function $f^{-1}: B \to A$. state the properties of f for which its inverse exists.
- 3. Define equal functions?
- 4. Let $f = \{(1,2), (2,3), (3,4)\}$ and $g = \{(2, 5), (3, 6), (4, 7)\}$ find gof?

5. Define a bijection?

6. Let $f : R \{1\} \rightarrow R$ be defined by f(x) = 1 + 2x, g(x) = 3 - 2x, find (fog) (3)?