STATEMENTS AND SETS

- 1. The terms which connect two statements are called _____
- 2. If the switch 'P' is 'OFF' we represent it by $_$
- 3. The complement law using ' \wedge ' is _
- 4. The truth value of $(3\neq 2) \lor (2=3)$ is _____
- 5. The statement of the form "If..... then......" is called an _____
- 6. A combination of one or more simple statements with a connective is called a _____
- 7. The symbol for existential quantifier _____ (June 2009), (June 2008)
- 8. $\sim (p \Leftrightarrow q) = _$
- 9. The contrapositive of "If a polygen is a square then it is a rectangle" is _____
- 10. p, q, r are three statements then $p \land (q \lor r) = (p \land q) \lor (q \land r)$ is _____ law
- 11. "For all" or "For every" is called _____ quantifier.
- 12. If p and q are switches. The combination of

$$p \lor q$$
 is called ______
A $\stackrel{p}{\square}$ _____B

13. p and q are two statements. The symbolic form of "Converse of a conditional is equivalent to its inverse" is _____

- 14. The statement which uses the connective "OR" is called a _____
- 15. The truth value of $(4 \times 7 = 20) \Leftrightarrow (4 \div 7 = 1)$ is _____
- 16. P is the statement then ~(~(~p)) is _____
- 17. The symbolic form of "If x is not odd then x^2 is odd" _____
- 18. p: It is raining, q: The sun is shining . Connect p,q using conjuction is _____
- 19. Denial of a statement is called its ____
- 20. p and q are two statements then example for tautology is ____
- 21. p<(~p) is very simple example of a _____ (June 2009)
- 22. $\sim(p \lor q) \equiv$ _____ (June 2009)
- 23. $P \lor p = p$. This is _____ law. (June 2010)
- 24. The symbol of Universal Quantifier is _____ (March 2009)
- 25. $\sim(p \lor q) \equiv (\sim p) \land (\sim q)$ is _____ law. (June 2008)
- 26. $p \lor (q \land r) \equiv (p \lor r) \land (p \lor r)$ is _____ law. (March 2008)
- 27. The truth value of implication statement : If $3 \div 2 = 5$ then $1 \times 0 = 0$ is _____ (March 2008)
- 28. The last column of truth table contains only F it is called
- 29. p or not p is example for _____
- 30. The inverse of " $\sim p \Rightarrow \sim q$ " is _____

KEY

1. Connectivities	2. P ¹	3. $(p \land (\sim p)) \equiv f$	4. True 5.	conditional (or) implication	
6. Compound statement	7.∃;	8. $\sim p \Leftrightarrow q$ (or) $p \Leftrightarrow \sim q$	9. If a polygon is not a rectangle then it is not a square.		
10. Distributive law.	11. Universal	12. Parallel combination	13. $(q \Rightarrow p) \equiv \sim (p \Rightarrow q)$		
14. Disjuction	15. True	16. ~p	17. "x is not odd \Rightarrow x ² is odd"		
18. p ∧ q	19. Negation	20. p∨(~q)	21. contradiction		
22. ~p∧~q	23. idempotent law	24. ∀	25. De morgan's law		
26. distributive law	27. True	28. contradiction	29. Tautology30	$p \Rightarrow q$	

SETS

- 1. If A and B are disjoint sets, then $n(A \cup B) =$ _____ (June 2009)
- 2. If $A \subset B$ then $A \cap B =$ _____ (June 2009)
- 3. The complement of μ is _____ (March 2009)
- 4. $n(\phi) =$ _____ (March 2009)
- 5. If $A \subset B$ then $A \cup B =$ _____ (June 2008)
- 6. If $A \subseteq B$ and $B \subseteq A$ then _____ (June 2008)
- 7. $A \cup A' =$ _____ (June 2008)
- 8. If $A \subseteq B$ and n(A) = 5, n(B) = 6 then $n(A \cup B) =$ _____ (March 2008)
- 9. The set builder form of B = {1,8,27,64,125} is _____ (March 2008)
- 10. $(A \cup B)' =$ _____ (March 2010)
- 11. If $A = \{3,4\}$, $B = \{4,5\}$ then $n (A \times B) =$ _____
- 12. $(A \cap B) \cup (A \cap C) =$ ____
- 13. If A sand B are two sets then A Δ B = _
- 14. If $A \subset B$, n(A) = 10 and n(B) = 15 then n(A-B) =_____
- 15. If $A \cap B = \phi$, $n(A \cup B) = 12$ then $n(A \Delta B) =$

- 16. If A, B, C are three sets $A (B \cup C) = _$
- 17. $n(A \cup B) = 8$, $n(A \cap B) = 2$, n(B) = 3 then n(A) =_____
- 18. If A = {x; x ≤ 5, x ∈ N}, B = {2,3,6,8} then A \cap B = ____
- 19. If A, B are disjoint sets n(A) = 4, $n(A \cup B) = 12$ then n(B) =
- 20. $(A \cup B)' = A' \cap B'$ is _____ law.
- 21. A, B are two sets then $x \notin (A B) =$ ____
- 22. A \subset B and n(A) = 5, n(B) = 6 then n(A \cup B) = _
- 23. The sets which are having same cardnial numbers are called _____
- 24. If A has 'n' elements then the number of elements in proper sub set is _____
- 25. If A and B are disjoint sets then $n(A \cap B) =$
- 26. If n(A) = 7, n(B) = 5 then the maximum number of elements in $A \cap B$ is _____
- 27. If $A \cap B = \phi$ then $B \cap A =$
- 28. If any law of quality of sets, if we interchange \cap and \cup and μ and ϕ the resulting law also true, this is known as _____
- 29. A B' = _
- 30. A, B are subsets of μ then A \cap B' = _____

KEY

1. n(A)+n(B)	2. A	3. ф	4.0	5. B	6. A = B	7. μ	8.6
9. $\{x/x = n^3, n \in \mathbb{N}\}$	$[, n \leq 5]$	10. A' \cap B'	11.4	12. $A \cap (B \cup C)$	13. (A∪B)-(A∩B)	(or) $(A-B) \cup (B-A)$	
14.0	15.12	16. (A-B)∩(A-C)	17.718. {2,3}	19.8	20. De Morgan's la	ıw	21. $x \notin A$ and $x \in B$
22. 6 23. equivalent sets		24. 2 ⁿ -2	25.0	26.5	27. B	28. Principle of duality	
29. A∩B	30. A-B						

STATEMENTS AND SETS: Important Questions

4 Marks

- 1. Using element wise prove that $A (B \cap C) = (A B) \cup (A C)$
- 2. Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 3. Let A,B are two subsets of a Universal set μ show that $A \cap B = A B^1 = B A^1$
- 4. Prove that $(A \land B)^1 = A^1 \cup B^1$

2 Marks

- 1. Define implication and write truth table?
- 2. Write the truth table $(\sim P) \lor (P \land q)$.
- 3. Write the converse, inverse and contrapasitive of the conditional "If in a triangle ABC, AB > AC then $\angle C > \angle B$.
- 4. If $A \cap B = \phi$ then show that $B \cap A^1 = B$
- 5. Using element wise proof show that $A B = A \cap B^1$
- 6. If A,B are any two sets, prove that $A^{1}-B^{1} = B-A$
- 7. Show that $A \cup B = \phi$, implies $A = \phi$ and $B = \phi$.

1 Mark

- 1. Define Tautology and contradiction?
- 2. Write Truth table for conjunction?
- 3. Prove that $(A^1)^1 = A$
- 4. Write contrapasitive of a conditional 'If two triangles are congruent then they are similar''.
- 5. Show that $P \land (\sim P)$ is contradiction.
- 6. If $A = \{1,2,3\}$, $B = \{2,3,4\}$ then find $A\Delta B$.

7. Write set-builder form of A = $\left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6} \right\}$

- 8. Prove that $A \land B \subset A$ for any two sets A, B.
- 9. Prove that $\sim(\sim P) = P$