1. The terms which connect two statements are called
2. If the switch ' P ' is 'OFF' we represent it by \qquad
3. The complement law using ' \wedge ' is \qquad .
4. The truth value of $(3 \neq 2) \vee(2=3)$ is \qquad
5. The statement of the form " If...... then......." is called an \qquad _
6. A combination of one or more simple statements with a connective is called a \qquad
7. The symbol for existential quantifier \qquad (June 2009), (June 2008)
8. $\sim(p \Leftrightarrow q)=$ \qquad
9. The contrapositive of "If a polygen is a square then it is a rectangle" is \qquad law
10. $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are threee statements then $\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})=(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{q} \wedge \mathrm{r})$ is \qquad
11. "For all" or "For every" is called \qquad quantifier.
12. If p and q are switches. The combination of $\mathrm{p} \vee \mathrm{q}$ is called \qquad

13. p and q are two statements. The symbolic form of "Converse of a conditional is equivalent to its inverse" is \qquad
14. The statement which uses the connective "OR" is called a \qquad
15. The truth value of $(4 \times 7=20) \Leftrightarrow(4 \div 7=1)$ is \qquad
16. P is the statement then $\sim(\sim(\sim \mathrm{p}))$ is \qquad
17. The symbolic form of "If x is not odd then x^{2} is odd" \qquad
18. p : It is raining, q : The sun is shining. Connect p, q using conjuction is \qquad
19. Denial of a statement is called its \qquad -
20. p and q are two statements then example for tautology is \qquad
21. $\mathrm{p} \wedge(\sim \mathrm{p})$ is very simple example of a \qquad (June 2009)
22. $\sim(p \vee q) \equiv$ \qquad (June 2009)
. $\mathrm{P} \vee \mathrm{p}=\mathrm{p}$. This is \qquad law. (June 2010)
. The symbol of Universal Quantifier is \qquad (March 2009)
23. $\sim(p \vee q) \equiv(\sim p) \wedge(\sim q)$ is \qquad law. (June 2008)
. $p \vee(q \wedge r) \equiv(p \vee r) \wedge(p \vee r)$ is \qquad law. (March 2008)
24. The truth value of implication statement :

If $3 \div 2=5$ then $1 \times 0=0$ is \qquad (March 2008)
28. The last column of truth table contains only F it is called \qquad
29. p or not p is example for \qquad
30. The inverse of " $\sim p \Rightarrow \sim q$ " is \qquad

KEY

1. Connectivities	2. P^{1}	3. $(\mathrm{p} \wedge(\sim \mathrm{p})) \equiv f$	4. True
6. Compound statement	7. \exists;	8. $\sim \mathrm{p} \Leftrightarrow \mathrm{q}(o r) \mathrm{p} \Leftrightarrow \sim \mathrm{q}$	9. If a polygon is not a rectangle then it is not a square.
10. Distributive law.	11. Universal	12. Parallel combination	13. $(\mathrm{q} \Rightarrow \mathrm{p}) \equiv \sim(\mathrm{p} \Rightarrow \mathrm{q})$
14. Disjuction	15. True	16. $\sim \mathrm{p}$	17. " x is not odd $\Rightarrow \mathrm{x}^{2}$ is odd"
18. $\mathrm{p} \wedge \mathrm{q}$	19. Negation	20. $\mathrm{p} \vee(\sim \mathrm{q})$	21. contradiction
22. $\sim \mathrm{p} \wedge \sim \mathrm{q}$	23. idempotent law	24. \forall	25. De morgan's law
26. distributive law	27. True	28. contradiction	29. Tautology \quad 30. $\mathrm{p} \Rightarrow \mathrm{q}$

SETS

1. If A and B are disjoint sets, then $n(A \cup B)=$ \qquad (June 2009)
2. If $\mathrm{A} \subset \mathrm{B}$ then $\mathrm{A} \cap \mathrm{B}=$ \qquad (June 2009)
3. The complement of μ is \qquad (March 2009)
4. $\mathrm{n}(\phi)=$ \qquad (March 2009)
5. If $A \subset B$ then $A \cup B=$ \qquad (June 2008)
6. If $A \subseteq B$ and $B \subseteq A$ then \qquad (June 2008)
7. $\mathrm{A} \cup \mathrm{A}^{\prime}=$ \qquad (June 2008)
8. If $A \subset B$ and $n(A)=5, n(B)=6$ then $n(A \cup B)=$ \qquad (March 2008)
9. The set builder form of $B=\{1,8,27,64,125\}$ is \qquad (March 2008)
10. $(A \cup B)^{\prime}=$ \qquad (March 2010)
11. If $A=\{3,4\}, B=\{4,5\}$ then $n(A \times B)=$ \qquad
. $(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})=$ \qquad $-$
12. If A sand B are two sets then $A \Delta B=$ \qquad)
\qquad
13. If $A \subset B, n(A)=10$ and $n(B)=15$ then $n(A-B)=$
14. If $A \cap B=\phi, n(A \cup B)=12$ then $n(A \Delta B)=$ \qquad
15. If A, B, C are three sets $A-(B \cup C)=$ \qquad
16. $n(A \cup B)=8, n(A \cap B)=2, n(B)=3$ then $n(A)=$ \qquad
17. If $A=\{x ; x \leq 5, x \in N\}, B=\{2,3,6,8\}$ then $A \cap B=$ \qquad -
18. If A, B are disjoint sets $n(A)=4, n(A \cup B)=12$ then $n(B)=$
19. $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ is \qquad law.
20. A, B are two sets then $x \notin(A-B)=$ \qquad
21. $A \subset B$ and $n(A)=5, n(B)=6$ then $n(A \cup B)=$ \qquad
22. The sets which are having same cardnial numbers are called \qquad
23. If A has ' n ' elements then the number of elements in proper sub set is \qquad
24. If A and B are disjoint sets then $n(A \cap B)=$ \qquad
25. If $n(A)=7, n(B)=5$ then the maximum number of elements in $A \cap B$ is \qquad
26. If $A \cap B=\phi$ then $B \cap A=$ \qquad
27. If any law of quality of sets, if we interchange \cap and \cup and μ and ϕ the resulting law also true, this is known as \qquad
28. $\mathrm{A}-\mathrm{B}^{\prime}=$ \qquad
29. A, B are subsets of μ then $\mathrm{A} \cap \mathrm{B}^{\prime}=$ \qquad

KEY

STATEMENTS AND SETS: Important Questions

4 Marks

1. Using element wise prove that $\mathrm{A}-(\mathrm{B} \cap \mathrm{C})=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{A}-\mathrm{C})$
2. Prove that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
3. Let A, B are two subsets of a Universal set μ show that $A \cap B=A-B^{1}=B-A^{1}$
4. Prove that $(A \wedge B)^{1}=A^{1} \cup B^{1}$

2 Marks

1. Define implication and write truth table?
2. Write the truth table $(\sim P) \vee(P \wedge q)$.
3. Write the converse, inverse and contrapasitive of the conditional "If in a triangle $\mathrm{ABC}, \mathrm{AB}>\mathrm{AC}$ then $\angle \mathrm{C}>\angle \mathrm{B}$.
4. If $\mathrm{A} \cap \mathrm{B}=\phi$ then show that $\mathrm{B} \cap \mathrm{A}^{1}=\mathrm{B}$
5. Using element wise proof show that $\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{B}^{1}$
6. If A, B are any two sets, prove that $A^{1}-B^{1}=B-A$
7. Show that $\mathrm{A} \cup \mathrm{B}=\phi$, implies $\mathrm{A}=\phi$ and $\mathrm{B}=\phi$.

1 Mark

1. Define Tautology and contradiction?
2. Write Truth table for conjunction?
3. Prove that $\left(\mathrm{A}^{1}\right)^{1}=\mathrm{A}$
4. Write contrapasitive of a conditional 'If two triangles are congruent then they are similar'.
5. Show that $\mathrm{P} \wedge(\sim \mathrm{P})$ is contradiction.
6. If $A=\{1,2,3\}, B=\{2,3,4\}$ then find $A \Delta B$.
7. Write set-builder form of $\mathrm{A}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}\right\}$
8. Prove that $A \wedge B \subset A$ for any two sets A, B.
9. Prove that $\sim(\sim \mathrm{P})=\mathrm{P}$
