 Sun releases energy A. nuclear fusion 	by the process of B. nuclear disintegration	C. nuclear fission	D. spontaneous combustion
2. The number of atom A. 1, 2 and 4 respective C. 1, 4 and 2 respective		<i>c</i> , and <i>fcc</i> are B. 8, 6 and 10 respective D. 2, 4 and 1 respective	•
3. In a diode, at saturat	ion current, the plate res	istance is	
A. zero	B. constant and finite	C. infinite	D. variable but finite
4. An <i>n</i> -type and a <i>p</i> -ty A. sodium and magness C. indium and sodium t	ium respectively	or can be obtained by dop B. phosphorous and bo D. boron and arsenic re	ron respectively
5. When the plate volta voltage to 200 V, the cu		its cut off voltage is -5 V	. On increasing the plate
A4.5V	B5.0V	C. + 2.3 V	D6.06 V
		6 mA when the plate volt voltage of -2 V is applie	age is 160 V. A grid is ed to it. The plate current
A. 20 mA	B. 10 mA	C. 4mA	D. 7.5mA
7. A long spring is stret potential energy is V. It by 10cm, its potential e	f the spring is stretched		
A. V/25 B. V/5	C. 5V D. 25V		
	s measured by an observer with respect t	ver moving with respect to rod is	to it is half of its proper
	B. $c/2 \text{ ms}^{-1}$	C. $(\sqrt{3})/2 c \text{ ms}^{-1}$	D. $1/\sqrt{2} c \text{ ms}^{-1}$
9. A + μ -meson with a proper half-life of 1.8 x 10 ⁻⁶ s is moving with a speed of 0.9 c with respect to an earth observer. The half-life of this μ -meson according to an observer sitting on it			
is A. 1.8 x 10 ⁻⁶ s	B. 1.8 x √0.19 x 10 ⁻⁶ s	C. $1.8/\sqrt{0.19} \ge 10^{-6}$ s	D. 1.8 x 0.19 x 10 ⁶ s
10. The mass per nucleon in an ordinary hydrogen atom is A. l/l6th mass per nucleon in an oxygen atom B. slightly greater than the mass per nucleon in an oxygen atom C. the same as mass per nucleon in an oxygen atom D. slightly smaller than the mass per nucleon in an oxygen atom 11. Consider the following nuclear reaction ${}_{2}\text{He}^{4} + {}_{7}\text{X}^{A} = {}_{7+2}\text{Y}^{A+3} + \text{W}$			

 $_{2}\text{He}^{4} + _{Z}X^{A} = _{Z+2}Y^{A+3} + W$ What particle does *W* denote ?

A. electron	B. positron	C. proton	D. neutron	
 12. The function of graphite and the control rods in a nuclear reactor are A. to produce neutrons and to shield the reactor B. to slow down the neutrons and to absorb the excess neutrons respectively C. to absorb the excess neutrons and to shield the reactor respectively D. to absorb neutrons and to reduce the energy of the neutrons respectively 				
13. In the first observed nuclear reaction, ${}_{7}N^{14}$ was bombarded with α -particles. The reaction could be represented as ${}_{7}N^{14} + {}_{2}He^{4} = X + {}_{1}H^{1}$ The element in this reaction is A. ${}_{8}O^{17}$ B. ${}_{8}F^{17}$ C. ${}_{8}N^{17}$ D. ${}_{8}Ne^{17}$				
14. In a Bucherer's experiment, the specific charge of some β particles is found to be 1/4th of the value determined by J.J. Thomson. The speed of these β particles is				
fixed point, its angular along	B. $\sqrt{15/4}$ c rotating in a plane about a momentum is directed	C. 1/4 c a	D. c	
A. the radius C. line at an angle of	B. the tangent to orbit			
45° to the plane of rotation	D. the axis of rotation			
16. A photo-cell with a constant p.d. of V volts across it, is illuminated by a point source from a distance 25 cm. When the source is moved to a distance of 1 m, the electrons emitted by the photo-cell				
A. carry 1/4th their previous energyB. are 1/16th as numerous as before				

C. are 1/4th as numerous as before

B. are 1/16th as numerous as before D. carry 1/4th their previous momentum

17. A convex lens of focal length 40 cm is in contact with a concave lens of focal length 25 cm. The power of combination is

18. A prism splits a beam of white light into its seven constituent colours. This is so becauseA. phase of different colour is differentC. energy of different colours is differentD. velocity of different colours is different

19. A prism has a refracting angle of 60° when a ray of light is incident on its face at 45° , it suffers minimum deviation. The angle of minimum deviation is

A. 30° B. 60° C. 45° D. 90° 20. A car driver sees an image of a bus in his driving mirror, which has a radius of curvature of 4 m. The bus which is 10 m long, is parallel

to and following the car in front of the bus 18 m from the mirror. The apparent length of the bus as seen in the mirror is

A. 700 mm B. 670 mm C. 800 cm D. 800 mm

21. A single slit of width d is placed in the path of a beam of wavelength λ . The angular width of principal maximum obtained is

C. $2\lambda/d$ A. d/λ **B**. λ/d D. $2d/\lambda$

22. A closed tube, partly filled with a liquid & set horizontal, is rotated about a vertical axis passing through its centre. In the process, the moment of inertia of the system about its axis would

A. increase always	B. decrease always
C. remain constant	D. increase if tube is less than half filled,
C. Temain constant	decrease otherwise

23. In an A.C. circuit the instantaneous current through and voltage across a capacitor are represented as I = I₀ sin ($\omega t + \pi/4$) and v = V₀ sin ($\omega t + \pi/8$) respectively. The current leads the voltage by

B. $3\pi/8$ C. $\pi/2$ A. $\pi/4$ D. $\pi/8$

24. A transformer having 2100 turns in the primary and 4200 turns in the secondary has an a.c. source of 120 V, 10 A connected to its primary. Then the secondary voltage and current are A. 240 V and 5 A B. 120 V and 10 A C. 240 V and 10 A D. 120 V and 20 A 25. When a magnet falls through a metal ring, acceleration through the metal ring during the free falls is

A. less than g throughout its fall

B. less than g when it is above the ring and more than g

when it is below the ring

C. more than g throughout its fall

D. more than g when it is above the ring and less than g

when it is below the ring

26. A copper rod is suspended in a non-homogeneous magnetic field region. The rod when in equilibrium, will then align itself

A. in the region where the magnetic field is strongest

B. in the direction in which it was originally suspended

C. in the region where the magnetic field is weakest and parallel to the direction of the magnetic field there

D. none of these

27. The substance which	ch shows permanent	magnetism is called	
A. anti-ferromagnetic	B. paramagnetic	C. diamagnetic	D. ferromagnetic

28. A magnetic substance is heated to 800 K and then cool down slowly to 300 K, then it B. retains its magnetism below curie points A. retains its magnetism

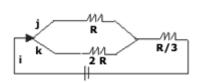
C. does not retain magnetism D. none of these 29. Two heater wires of equal length are first connected in series and then in parallel. The ratio of heat produced in the two cases is A. 2:1 B. 1:2 C. 4:1 D. 1:4

30. A galvanometer with a coil resistance of 100Ω gives a full-scale deflection when a current of 1 mA is passed through it. The resistance of the shunt needed to convert this galvanometer into an ammeter 5 of range 10 A is nearly

A. 0.01Ω B. 0.001Ω C. 0.1Ω D. 0.099Ω

31. The resistance of a 50 cm long wire is 10Ω . The wire is stretched to uniform wire of length 100 cm. The resistance now will be

A. 15Ω B. 30Ω C. 20Ω D. 40Ω


32. In the given circuit, the currents i, j, and k are in the ratio

B. 3:2:1

D. 3:1:2

C. 2:1:3

A. 1:2:3

33. A conducting sphere of radius R is given a charge Q. Consider three points B at the surface, A at centre and C at a distance R/2 from the center. The electric potential at these points are such that

A. $V_A = V_B = V_C$ B. $V_A = V_B \neq V_C$ C. $V_A \neq V_B \neq V_C$ D. $V_A \neq V_B = V_C$ 34. The mass of a proton is 1847 times that of an electron.

An electron and a proton are projected into a uniform

electric field in a direction of right angles to the direction of

the field with the same initial kinetic energy. Then

A. both the trajectories will be equally curved

B. the proton trajectory will be less curved than the electron trajectory

C. the electron trajectory will be less curved than the proton trajectory

D. the relative curving of the trajectories will be dependent on the value of initial kinetic energy

35. The wavelength of maximum radiation from the moon is 14×10^{-6} m. If the value of the constant in Wein's displacement law is 0.00293 mK, the surface temperature of moon is A. 207 K B. 146 K C. 227 K D. 103.5 K 36. A given mass of gas is subjected to an external pressure of 0.5 x 10^{10} N/m². If $K = 10^{10}$ Nm⁻², the ratio of the density before and after applying the pressure is A. 1 : 1 B. 1 : 2 C. 2 : 1 D. 1 : 4

37. The heat reservoir of an ideal Carnot engine is at 800 K and its sink is at 400 K. The amount of heat taken in it in one second to produce useful mechanical work at the rate of 750 K is

has 50% ef	ficiency. If t	B. 1125 J ith its cold body at 17°C he temperature of its ho by 145°C, the efficiency	t	D. 750 J
A. 55%	B. 60%	C. 40% D. 45%		
		n increases in length by me expansion of the wir	10^{-4} m when heated throu re is	gh 10 ² degree celsius.
A. 2 x 10 ⁻⁶		B. 1 x 10 ⁻⁶	C. 3 x 10 ⁻⁶	D. 4 x 10 ⁻⁶
40. The pit	ch of a soun	d wave is related to its		
A. frequent	су	B. amplitude	C. velocity	D. beats
	<i>m</i> is hung to osition; this	-	me, it was observed that	mass <i>m</i> moves up from
A. decrease temperature		B. increase in temperature	C. the statement is wrong	D. change in humidity
		rce constant 8 Nm ⁻¹ is c ent force constant of the		and the two are connected
A. 16 Nm ⁻¹	l	B. 32 Nm ⁻¹	C. 8 Nm ⁻¹	D. 24 Nm ⁻¹
 A. k 44. A wave direction is in meters at A. travellind direction B. of wavel C. of freque D. of amplidirection 45. The period for t	e equation will given by y = nd t is time in g with a velocity length π met ency $30/\pi$ he itude 10^4 met riodic times	B. $2k$ hich gives the displacen = $10^{-4} \sin (60t + x)$ when n seconds. This represe ocity of 300 ms ⁻¹ in the ters ertz ter travelling along the p	re <i>x</i> and <i>y</i> are nts a wave -ve <i>x</i> - positive <i>x</i> - are observed for differen raph is B. 1/2	D. 4k
C. √ 2			D. 1/√ 2	
46. Ordina A. 0 to1	rily, the valu	e of coefficient of restit B. 0 to 0.5	ution varies from C1 to +1	D0.5 to +0.5
47. In a ora	vitational fi	eld, if a body is bound v	vith earth, then total mecl	hanical energy it has is

47. *In* a gravitational field, if a body is bound with earth, then total mechanical energy it has is A. *a* +ve value B. a zero value C. a -ve value D. K.E. less than P.E.

48. The mass of a planet is twice the mass of earth and diameter of the planet is thrice the diameter of the earth, then the acceleration due to gravity on the planet's surface is

A. g/2 B. 2g C. 2g/9 D. $3g/\sqrt{2}$

49. A stationary bomb explodes into two parts of masses 3 kg and 1 kg. The total K.E. of the two parts after explosion is 2400J. The K.E. of the smaller part is
A 600 J B 1800 J C 1200 J D 2160 J
50. In a perfectly elastic collision
A. both momentum and K.E. are conserved
C. only K.E. is conserved
D. neither K.E. nor momentum is conserved

51. A bullet of mass 7g is fired at a velocity of 900 ms⁻¹ from a rifle of mass 3.5 kg. What is the recoil velocity of the rifle?

A 0.9 ms⁻¹ B 180 ms⁻¹ C 900 ms⁻¹ D 1.8 ms⁻¹

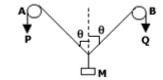
52. In the arrangement shown in the figure, P and Q are in inflexible strings moving downward with uniform speed U, pulleys A and B are fixed. Mass M move upwards with a speed of

A. 2 U cos θ B. U/cos θ

C. $2U/\cos\theta$ D. U cos θ

53. The figure shows the angular velocity-time graph of a flywheel. The angle, in radians, through which the flywheel turns during 25 sec is

A. 75 B 480 C. 615 D. 750 rad/s 0 4 Time (sec) 20 25


54. A ball is dropped from the top of a building 100m high. At the same instant another ball is thrown upwards with a velocity of 40 ms^{-1} from the bottom of the building. The two balls will meet after

A. 5 sec B. 2.5 sec C. 2 sec D. 3 sec

55. A train accelerating uniformly from rest attains a maximum speed of 40 ms⁻¹ in 20 seconds. It travels at this speed for 20 seconds and is brought to rest with uniform retardation in further 40 seconds. What is the average velocity during this period?

A. $80/3 \text{ ms}^{-1}$ B. 40 ms^{-1} C. 25 ms^{-1}	D. 30 ms ⁻¹
---	------------------------

56. Two bodies are held and separated by 19.8m vertically one above the other. They are released simultaneously to fall freely under gravity. After 2 seconds, the relative distance between them is:

A. 14.9m 57. A particle moves in a s ms^{-2} . The tirr from the state A. 10 sec	straight line ne at which rting point i	with a retard the particle s	lation of 0.1 is 1.5 m far		D. 39.2m
58. The unit A. 1 A	s of current	in C.G.S. sy B. 1/10 A	vstem is	C. 1/100 A	D. 1/1000 A
59. The unit A. volt/metr		field are B. volt ² /me	tre	C. volt x metre	D. metre ²
60. The unit A. kg-m	of moment	of inertia is B. kg-m ²		C. kg/m	D. kg/m ²
synthetic f	e of B.			e	
62. Brown r A. iodide	ing test is u	sed to detect B. nitrate		C. iron	D. bromide
63. CarbohyA. for obtainC. for all its	ning vitamii		mainly	B. as source of energy D. for building muscles	;
64. The poly A. Nylon	ymer contai	ning an amic B. Polythen		C. Polystyrene	D. Terylene
65. The orga A. $(C_2H_5)_4P$	-	und used as a B. TNT	antiknock ag	gent in petroleum is C. CH ₃ MgBr	D. (C ₂ H ₅) ₂ Hg
A. aliphatic C. aliphatic 67. Aromatic cold HNO ₂ § A. benzyl	2° amine 1° amine c primary a	used in the o mine when the C. benzene	reated with D.	B. aromatic 1 ^o amine D. both aliphatic and ar	romatic 1º amines

68. Which of petroleur A. C_{15} - C_{18}	n corresponds to kerosen B. C_{10} - C_{12}	e oil? C. C ₅ - C ₉	D. C ₁ - C ₄	
69. Aldehydes and kete A. bromoform	ones can be distinguished B. solubility in water		D. Mollich test	
70. Aspirin is obtained A. phenol	by the reaction of CH ₃ C B. benzoic Acid	OCl with C. benzaldehyde	D. salicylic acid	
71. Correct order of the A. $I > I^- > I^+$	e size of iodine species is B. $I^- > I > I^+$	$^{\rm S}$ C. I ⁺ > I > I ⁻	D. $I^- > I^+ > I$	
72. Nitrolin is a name g A. CaCN ₂ + C	given to B. Ca ₃ (PO ₄) ₂	C. Ca(CN) ₂	D. Ca(NO ₃) ₂	
	and, which cannot exit to I B. Na ₂ CO ₃ and NaOH	-	₃ D. NaHCO ₃ and NaCl	
74. One of the constitu A. Ag	ents of the german silver B. Cu	is C. Mg	D. Al	
75. Which compound i A. 4-chloro, l-hydroxy C. Secondary butyl am	butane	B. 3° butyl alcohol D. n-butyl alcohol		
76. Plumbo solvancy in A. bases	mplies dissolution of lead B. acids	d in C. ordinary water	D. CuSO ₄ sol	
77. Indigo dye belongs A. Vat dye	to B. Mordant dye	C. Direct dye	D. Ingrain dye	
78. Dipole moment is shown byA. 1, 4-dichloro benzeneC. trans, -1, 2-dichloro, 2-penteneD. trans, -1, 2-dichloro ether				
 79. When acetylene is passed through H₂SO₄ containing HgSO₄, it gives A. ethyl alcohol B. acetic Acid C. acetaldehyde D. ethylene 80. The compound, which does not leave any residue on heating, is A. NaNO₃ B. NH₄NO₃ C. CuSO₄ D. AgNO₃ 				
	wing alloys contain only B. Brass		D. Bell metal	

82. Gold number is a measure of theA. stability of a colloidal systemC. coagulating power of colloids		B. efficiency of a protective colloids D. size of the colloidal particle	
83. Whose name is not A. Prout's	associated with the deve B. Newlands	lopment of Periodic Table? C. Rutherford D. Loother Meyer	
84. Polarisibility of hal A. F ⁻ , I ⁻ , Br ⁻ , Cl ⁻	ide ions increases in the B. Cl ⁻ , Br ⁻ , I ⁻ , F ⁻	order C. I ⁻ , Br ⁻ , Cl ⁻ , F ⁻	D. F ⁻ , Cl ⁻ , Br ⁻ , I ⁻
85. Acetylene molecule A. 5σ bond	es contain B. 4σ bond and 1π bond	C. 3σ and 2π	D. 3σ and 3π
A. mole-B. atm/K litre/mole 88. An element X whice	ber of S in $NO_2S_4O_6$ is B. 2.5 n, the dimension of R is C. litre- D. erg/K atm/K/mole th occurs in the first shor nd acid-base character of		D. + 10 ctronic structure s^2p^1 .
A. XO ₃ , basic			D. XO_2 , acidic
89. The uncertainty in tuncertainty in its velocities	the position of a moving ity.	bullet of mass 10 gm is	10^{-5} m. Calculate the
A. 5.2 x 10^{-28} m/sec	B. 3.0×10^{-28} m/sec	C. 5.2 x 10^{-22} m/sec	D. 3 x 10 $^{-22}$ m/sec
90. Which is not param A. O_2	agnetic? B. O_2^+	C. O_2^{2-}	$D. O_2^-$
91. What is wrongly stated about electrochemical series?A. It is the representation of element in order of increasing or decreasing standard electrode reduction potentialB. It does not compare the relative reactivity of metalsC. It compares relative strengths of oxidising agentsD. H₂ is centrally placed element			
of O ₂ because A. of the extra stability	B. F ⁻ and O ⁻ gy of N_2 is more than that		D. Na ⁺ and Mg^{+2}
of half filled p-orbitals in N ₂ C. the former contains less number of electrons	N ₂ D. the former is less electronegative		

94. Stainless steel is an A. 8% Cr, 5% Mn	alloy of iron with B. 10% Ni, 2% Mn,	C. 2%Cr, 3%C	D. 12%Cr, 1%N
95. Highest pH (14) is A. 0.1 M H ₂ SO ₄	• •	C. 1 N NaOH	D. 1 N HCl
96. N_2 atom has 3 unpa	ired electrons, because o	of	
A. Hund's Rule	B. Uncertaintity Principle	C. Pauli's Exclusion Principle	D. Aufbau's Rule
97. A group of atoms c A. it is a small molecul C. it is a negatively cha		nly when B. it has an unshared el D. it is positively charg	-
	-		
 98. When potassium dichromate crystals are heated with conc. HCl, A. O₂ is evolved B. Chromyl chloride va C. Cl₂ is evolved D. No reaction takes pl 99. Aluminium is more reactive than Fe. But Al is less easily corroded than iron because 			-
A. Al is noble metal	B. Fe forms both mono and divalent ions		
C. Al forms a protectiv oxide layer			
100. The ratio of C_v/C_p	for inert gas is		
A. 1.33	B. 1.66	C. 2.13	D. 1.99
101. The pH of blood i	s		
A. less than 6 B	5	B. greater than 7 and le	ess than 6
C. greater than 8 and le	ess than 9	D. greater than 10	
	·		1 h (
A. CO_2 and NH_3	is manufactured by Solv B. CO ₂ and NH ₄ Cl	C. NaCl	D. $CaC1_2$ and CaO
103. Among the follow	ving which is the weakest	t base?	
A. NaOH	B. Ca(OH) ₂	C. KOH	D. $Zn(OH)_2$
104. The set of quantum number not applicable for an electron in an atom is A. $n = 1$, $l = 1$, $m = 1$, $S = +1/2$ B. $n = 1$, $l = 0$, $m = 0$, $S = +1/2$			
C. $n = 1, l = 0, m = 0, S$	S = -1/2	D. $n = 2, l = 0, m = 0, S$	S = +1/2
105. The conversion of $A \rightarrow B$ follows second order kinetics, tripling the concentration of A will increase the rate of formation of B by a factor of			

C. 1/2 A. 1/4 **B**. 2 D. 9 106. Amino group in the benzene group can be protected by B. salfoniation A. arylation C. chlorination D. acetylation 107. The light radiation with discrete quantities of energy is called A. electron B. photon C. positron D. meson 108. How many primary amines are possible for the formula $C_4H_{11}N$? B. 2 C. 3 A. 1 D. 4 109. Base catalysed aldol condensation occurs with A. propanaldehyde B. benzaldehyde C. 2, 2-dimethyl propionaldehyde D. none of the above 110. A sample of chloroform before being used as an anaesthetic is tested by A. Fehling's solution B. ammonical cuprous chloride C. silver nitrate solution D. silver nitrate solution after boiling with alcoholic potassium hydroxide 111. 1-chlorobutane on reaction with alcoholic potash gives A. 1-butene B. 1-C. 2-butene D. 2butanol butanol 112. The halogen which is most reactive in the halogenation of alkanes under sunlight is C. iodine D. fluorine A. chlorine B. bromine 113. The highest b.p. is expected for C. n-octane A. iso octane B. only ketone D. n-butane 114. The bond between carbon atom (1) and carbon atom (2) in compound N= C-CH=CH₂ involves the hybrids as B. sp^3 and spC. sp and sp^2 A. sp^3 and sp^2 D. sp and sp 115. If two compounds have the same empirical formula but different molecular formula, they must have A. different percentage composition B. different molecular weight C. same viscosity D. same vapour density 116. Optical isomerism is shown by A. Butanol-1 B. Butanol-2 C. Butene-1 D. Butene-2 117. The ion that cannot be precipitated by both HCl and H_2S is D. Sn²⁺ A. Pb^{2+} B. Cu^+ C. Ag^+ 118. The aqueous solution of the following salts will be coloured in case of A. B. LiNO₃ C. D. ArCl₃

 $Zn(NO_3)_2$ $CO(NO_3)_2$

119. The highest degree of paramagnetism per mole of the compound at 25°C will be shown by A. MnSO₄.7H₂O B. COCl₂.6H₂O C. FeCl₃.4H₂O D. NiCl₂.6H₂O 120. Bromine can be liberated from KBr solution by the action of C. sodium chloride A. iodine solution B. chlorine water D. potassium iodide 121. If A and B be any two sets, then $(A \cup B)'$ is equal to C. A' \cap B' A. $A \cap B$ B. $A \cup B$ D. A' \cup B' 122. If $A = \{1, 2, 3, 4\}$ then which of the following are functions from A to itself? A. $f_4 = \{ (x, y) : x + y = 5 \}$ B. $f_3 = \{ (x, y) : y < x \}$ C. $f_2 = \{ (x, y) : x + y > 4 \}$ D. $f_1 = \{ (x, y) : y = x + 1 \}$ 123. The solution of $6 + x - x^2 > 0$ is B. -2 < x < 3A. -1 < x < 2C. -2 < x < -1D. none of the above 1 - iz **124.** If z = x + iy and , then $|\omega| = 1$ implies that in the complex ω = plane, z - i A. z lies on the unit circle B. z lies on the imaginary axis C. z lies on the real axis D. none of the above 125. The first term of a G.P., whose second term is 2 and sum to infinity is 8, will be A. 6 **B**. 3 C. 4 D. 1 126. Equation of circle having diameters 2x - 3y = 5 and 3x - 4y = 7, and radius 8 is A. $x^{2} + y^{2} - 2x + 2y - 62$ B. $x^{2} + y^{2} + 2x + 2y - 2$ = 0= 0C. $x^2 + y^2 + 2x - 2y +$ D. none of the above 62 = 0127. A and B are points in the plane such that PA/PB = K (constant) for all P on a circle. The value of K cannot be equal to A. -1/2 **B**. 1/2 C. -1 D. 1 128. If the centroid and circumcentre of a triangle are (3, 3) and (6, 2) respectively, then the orthocentre is

A. (-3, 5) B. (-3, 1) C. (3, -1) D. (9, 5)

129. If sin x + cos x = 1/5, $0 \le x \le \pi$, then tan x is equal to

A 4/3 or -3/4	B. 4/3	C. 4/5	D. none of the above
130. If r_1 , r_2 , r_3 in a tria	ngle be in H.P., then the	sides are in	
A. H.P.	B. A.P.	C. G.P.	D. none of the above
131. $\cot \theta = \sin 2\theta \ (\theta \neq \theta)$	= nπ, n integer) if θ equal	S	
A. 45° and 90°	B. 45° and 60°	C. 90° only	D. 45°
132.			
If a			
= (b			
- c)	=		
sec			
θ,			
then			
b - c	2		
A. $\cos \theta$ B. $\cot \theta$	C. $\tan \theta$ D. $\sin \theta$		

133. The average of n numbers x_1 , x_2 , x_3 ,, x_n is M. If x_n is replaced by x', then new average is

(**x**) =

134. In an entrance test, there are multiple choice questions. There are four possible answers to each question of which one is correct. The probability that a student knows the answer to a question is 90%. If he gets the correct answer to a question, then the probability that he was guessing is

A. 1/9 B. 36/37 C. 1/37 D. 47/40 135. The value of $\tan \left[\cos^{-1}(4/5) + \tan^{-1}(2/3)\right]$ is D. none of C. 7/16 A. 16/7 **B.** 6/17 the above 136. Lt x - [x] , where k is an integer, is equal to $x \rightarrow k$ -A. -1 **B**. 1 C. 0 D. 2 tan x [log (x - 2)] is discontinuous are given 137. The values of x where the function f

by

C. $(-\infty, 2) \cup \{2n\pi,$	$ t, n \ge 1 $	B. $(-\infty, 2)$	
d^2x	$\pi/2, n = 1$	D. none of the abo	ive
138.			
If y			
	is		
+ e ^x , then			
dy ²			
1	e ^x		
A	B		
$(1 + e^{x})^{2}$	$(1 + e^{-1})^2$		
e C	D. e^x		
$(1 + e^x)^3$	2.0		
	$f(x) = 2 \sin 3x + 3 \cos 3x dx$		\mathbf{D} none of the she
A. zero	B. maximum	C. minimum	D. none of the above
A. x < 1	B. x > 1	C. x < 0	D. $x > 0$
$141 \int f_{ain} (lag x) +$	aaa (1aa x)] dx is acual t		
-	$\cos(\log x)$] dx is equal t $(\log x) + c$		
A. $\sin(\log x) + \cos(\log x)$	$(\log x) + c$	B. $\sin(\log x) + c$	ve
$141. \int [\sin (\log x) + A. \sin (\log x) + \cos C. x \cos (\log x) + c x$	$(\log x) + c$		ve
A. $\sin(\log x) + \cos x$ C. $x \cos(\log x) + c$ x $\frac{1/2}{5} \cos x$	$(\log x) + c$	B. $\sin(\log x) + c$	we
A. $\sin(\log x) + \cos x$ C. $x \cos(\log x) + c$ x 142. $\int \frac{1/2}{\pi/2} \cos x$	$(\log x) + c$	B. $\sin(\log x) + c$	we
A. $\sin(\log x) + \cos x$ C. $x \cos(\log x) + \cos x$ 142. $\int_{-1/2}^{1/2} \frac{x}{\pi/2} x$	$(\log x) + c$	B. $\sin(\log x) + c$	ve
A. $\sin(\log x) + \cos x$ C. $x \cos(\log x) + \cos x$ I 42. $\int_{-1/2}^{1/2} \frac{x}{\cos \pi/2} x$ is	$(\log x) + c$	B. sin (log x) + c D. none of the abo	ve
A. $\sin(\log x) + \cos x$ C. $x \cos(\log x) + \cos x$ I 42. $\int_{-1/2}^{1/2} \frac{1}{2} \cos x$ $\pi/2 x$ is	$(\log x) + c$	B. sin (log x) + c D. none of the abo	ve
A. $\sin(\log x) + \cos x$ C. $x \cos(\log x) + \cos x$ 142. $\int_{-1/2}^{1/2} \frac{ x }{ x }{\frac{\pi}{2} \cos \pi}$ 142. $\int_{-1/2}^{1/2} \frac{ x }{ x }{\frac{\pi}{2} \cos \pi}$ A. 0 B. 1	$(\log x) + c$ C. $(\pi\sqrt{2} + D. none)$ $4\sqrt{2} - 8)/\pi^2$ the above	B. sin (log x) + c D. none of the abo	ve
A. $\sin(\log x) + \cos x$ C. $x \cos(\log x) + \cos x$ 142. $\int \frac{ x }{\pi/2} \frac{ x }{ x } \frac{ x }{ x } \frac{1/2}{ x } 1/2$	$(\log x) + c$ C. $(\pi\sqrt{2} + D.$ none $4\sqrt{2} - 8)/\pi^2$ the abo	 B. sin (log x) + c D. none of the abo e of ve ydx = 0 represents 	
A. sin $(\log x) + \cos x$ C. x cos $(\log x) + \cos x$ (log x) + c x 1/2 cos 142. $\int_{-1/2}^{1/2} \frac{\pi}{2} x$ -1/2 dx is A. 0 B. 1 143. Solution of dif A. parabola whose	$(\log x) + c$ C. $(\pi\sqrt{2} + D. none)$ $4\sqrt{2} - 8)/\pi^2$ the abo Efferential equation xdy - you wanted the second s	B. sin (log x) + c D. none of the abo e of ve ydx = 0 represents B. circle whose cer	
A. $\sin(\log x) + \cos x$ C. $x \cos(\log x) + \cos x$ ($\log x + c = \frac{ x }{ x }$ ($1/2 \cos x = \frac{ x }{\pi/2}$ (1	$(\log x) + c$ C. $(\pi\sqrt{2} + D. \text{ none})$ $4\sqrt{2} - 8)/\pi^2$ the abo Efferential equation xdy - y vertex is at origin perbola	 B. sin (log x) + c D. none of the above e of ve ydx = 0 represents B. circle whose cenders D. straight line pass 	ntre is at origin ssing through origin
A. $\sin(\log x) + \cos x$ C. $x \cos(\log x) + \cos x$ ($x \cos(\log x) + \cos x$ ($x \cos(142. \int \pi/2 x)$ $\pi/2 x$ $\pi/2 x$ $\pi/2 x$ ($\pi/2 x$ $\pi/2 x$	$(\log x) + c$ C. $(\pi\sqrt{2} + D. \text{ none}$ $4\sqrt{2} - 8)/\pi^2$ the abo Efferential equation xdy - y vertex is at origin perbola - f(-x), then h(x) has got a	 B. sin (log x) + c D. none of the above e of ve ydx = 0 represents B. circle whose cerding by the base of the base of	ntre is at origin ssing through origin oint where f '(x) is
A. $\sin(\log x) + \cos x$ C. $x \cos(\log x) + \cos x$ 142. $\int \frac{ x }{\pi/2} \frac{ x }{ x } \frac{ x }{ x }$ 142. $\int \frac{\pi/2}{\pi/2} \frac{ x }{ x }$ A. 0 B. 1 143. Solution of diff A. parabola whose C. a rectangular hyperbolic difference of the second	$(\log x) + c$ C. $(\pi\sqrt{2} + D. \text{ none})$ $4\sqrt{2} - 8)/\pi^2$ the abo Efferential equation xdy - y vertex is at origin perbola	 B. sin (log x) + c D. none of the above e of ve ydx = 0 represents B. circle whose cenders D. straight line pass 	ntre is at origin ssing through origin

146. Roots of $x^2 + k = 0$, k < 0 are A. real and equal B. rational C. real and distinct D. equal 147. In a quadratic equation with leading coefficient 1, a student reads the coefficient 16 of x strongly as 19 and obtains the roots as -15 and - 4. The correct roots are A. 8, 8 C. - 6, - 10i D. - 8, - 8 B. 6, 10 148. The value of m for which the equation $x^2 - mx^2 + 3x - 2 = 0$ has two roots equal in magnitude but opposite in sign is D. 1/2 A. 4/5 B. 3/4 C. 2/3 149. If 1/(b-a) + 1/(b-c) = 1/a + 1/c, then a, b, c are in A. H.P. B. G.P. C. A.P. D. none of the above 150. If every term in G.P. is positive and also every term in the sum of two proceeding terms, then the common ratio of the G.P. is C. $(\sqrt{5} - 1)/2$ A. $(1 - \sqrt{5})/2$ B. $(\sqrt{5} + 1)/2$ D. 1 151. If $y = -(x^3 + x^6/2 + x^9/3 + \dots)$, then $\mathbf{C} \mathbf{x}^3 = \mathbf{e}^{\mathbf{y}}$ A. $x^3 = 1 - e^y$ B. $x^3 = \log(1 + y)$ D. $x^3 = 1 + e^y$ 152. Vinay, Manish, Rahul, and Sumit have to give speeches in a class. The teacher can arrange the order of their presentation in D. 256 A. 12 ways B. 24 ways C. 4 ways ways 153. There are n (>2) points in each of two parallel lines. Every point on one line is joined to every point on the other line by a line segment drawn within the lines. The number of points (between the lines) in which these segments intersect is

A. ${}^{n}C_{2} \times {}^{n}C_{2}$ B. ${}^{2n}C_{2} - 2({}^{n}C_{2})$ C. ${}^{2n}C_{2} - 2({}^{n}C_{1}) + 2$ D. none of the above

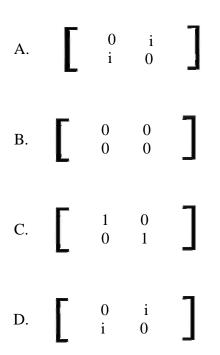
154. The number of ways in which 7 persons can sit around a table so that all shall not have the same neighbours in any two arrangements is

A. 360 B. 720 C. 270 D. 180

155. The length of sub normal to the parabola $y^2 = 4ax$ at any point is equal to A. $a\sqrt{2}$ B. $2\sqrt{2}a$ C. $a/\sqrt{2}$ D. 2a

 156. The expansion of $(8 - 3x)^{3/2}$ in terms of power of x is valid only if

 A. x > 8/3 B. |x| < 8/3 C. x < 3/8 D. x < 8/3


 157. If $y = -(x^3/2 + x^3 - x^4/4 +)$, then x is
 A. $e^y - 1$ B. $\log(1 + C. e^y + 1)$ D. e^y

y)

158. If a, b, c are in G.P., then $\log_a m$, $\log_b m$, $\log_c n$ are in			
A. G.P.	B. H.P.	C. A.P.	D. none of the above

159. If A is a matrix of order 3 x 4, then each row of A has				
A. 12 elements	B. 3 elements	C. 7 elements	D. 4 elements	

 $\begin{array}{c} 160. \\ \text{If A} \\ = \end{array} \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}, n \in \mathbb{N}, \text{ then } A^{4n} \\ \text{equals} \end{array}$

161. If α , β , γ are the roots of the equation $x^2 + px + q = 0$, then the value of the determinant

α	β	γ	
β	γ	α	is
γ	α	β	

A. q B. 0 C. p D. $p^2 - 2q$

162. If A, B, C are any A. A + B + C	three matrices, then A' + B. $(A + B + C)'$	B' + C' is equal to C (A + B + C)		D. a null matrix
163. If A is any matrix A. $m > n$, then the product A.A, i. B. m = n	e., A^2 is defined of C. m < n	only wh	en A is a matrix of order D. $m \ge n$
$\vec{\rightarrow}$ $\vec{\rightarrow}$ $\vec{\rightarrow}$ 164. The area of the parallelogram of i an which A. $\sqrt{2}$ B. 1/2	→ are di+j adjacent is C. 2 D. 1			
165. If the direction co A. $0 < c < 1$	psines of line are $(1/c, 1/c)$ B. c > 2	(1/c), then C. c > 0		D. $\pm \sqrt{3}$
166. The sine of the a	ngle between the	x - 2	y - 3	z - 4
166. The sine of the angle between the		=3	4	and 5
the plane $2x - 2y + z = A$. $10/(6\sqrt{5})$	= 5 is B. $4/(5\sqrt{2})$	C. √ 2/10		D. (2√3)/5
167. Constant term in t A. 152	the expansion of (x - 1/x) B 152	¹⁰ is C 252		D. 252
168. The latus rectum of A. $5/3$ 169. $i^2 + i^4 + i^6 + \dots$ A 1 B. 1	of the ellipse $5x^{2} + 9y^{2} =$ B. 10/3 (2n + 1) terms = C i D. i	45 is C. (2√5)/3		D. √5/3
170. If the sum of the series 2, 5, 8, 11, is 60100, then n isA. 100B. 200C. 150D. 250				
171. Two of the lines represented by the equation $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4 = 0$ will be perpendicular, then A. $(b + d)(ad + be) + (e - a)^2(a + c + e) = 0$ C. $(b - d)(ad - be) + (e - a)^2(a + c + e) = 0$ B. $(b + d)(ad + be) + (e + a)^2(a + c + e) = 0$ D. $(b - d)(ad - be) + (e + a)^2(a + c + e) = 0$				
172. The probability that an event A happens on trial of an experiment is 0.4. Three independenttrials of the experiment are formed. The probability that the event A happens at least once isA. 0.936B. 0.784C. 0.904D. 0.984				

173. The numbers are selected at random from 1, 2, 3, 100 and are multiplied, then the

probability correct to two places of decimals that the product thus obtained is divisible by 3, is A. 0.55 **B**. 0.44 C. 0.22 D. 0.33 174. If $p^2 + q^2 = 1$ and $m^2 + n^2 = 1$, then A. $| p_m + q_n B. | p_m + q_n C. | p_q + mnD. | p_q +$ |>1 $|\leq 0$ $| \leq 1$ mn | < 2175. In a football championship, there were played 153 matches. Every two team played one match with each other. The number of teams participating in the championship is A. 9 **B**. 11 C. 13 D. 18 176. The solution of |(x - 1) + 2| = 1 is A. 1 C. 5 B. 2 D. \$ 177. The equation $\log_e x + \log_e (1 + x) = 0$ can be written as A. $x^2 + x - e = 0$ B. $x^2 + x - 1 = 0$ C. $x^2 + x + 1 = 0$ D. $x^2 + xe - e = 0$ 178. Both the roots of the equation (x - b)(x - c) + (x - a)(x - c) + (x - a)(x - b) = 0 are always B. negative C. real D. imaginary A. positive 179. The value of tan x/tan 3x whenever defined never lies between A. 1/3 and B. 1/4 and C. 1/5 and D. 5 and 6 4 5 3

 180. Given (a + d) > (b + c) where a, b, c, d are real numbers, then

 A. a, b, c, d are in A.P.

 C. (a + b), (b + c), (c + d), (a + d) are in A.P.

 D. 1/(a + b), 1/(b + c), 1/(c + d), 1/(a + d) are in A.P.

 A. a, b, c, d are in A.P.

 B. 1/a, 1/b, 1/c, 1/d are in A.P.

 D. 1/(a + b), 1/(b + c), 1/(c + d), 1/(a + d) are in A.P.