XML Interview Questions with Answers:
11. Give a few examples of types of applications that can
benefit from using XML.

There are literally thousands of applications that can benefit
from XML technologies. The point of this question is not to have
the candidate rattle off a laundry list of projects that they have
worked on, but, rather, to allow the candidate to explain the rationale
for choosing XML by citing a few real world examples. For instance,
one appropriate answer is that XML allows content management systems
to store documents independently of their format, which thereby
reduces data redundancy. Another answer relates to B2B exchanges
or supply chain management systems. In these instances, XML provides
a mechanism for multiple companies to exchange data according to
an agreed upon set of rules. A third common response involves wireless
applications that require WML to render data on hand held devices.

12. What is DOM and how does it relate to XML?

The Document Object Model (DOM) is an interface specification maintained
by the W3C DOM Workgroup that defines an application independent
mechanism to access, parse, or update XML data. In simple terms
it is a hierarchical model that allows developers to manipulate
XML documents easily Any developer that has worked extensively with
XML should be able to discuss the concept and use of DOM objects
freely. Additionally, it is not unreasonable to expect advanced
candidates to thoroughly understand its internal workings and be
able to explain how DOM differs from an event-based interface like
SAX.

13. What is SOAP and how does it relate to XML?

The Simple Object Access Protocol (SOAP) uses XML to define a protocol
for the exchange of information in distributed computing environments.
SOAP consists of three components: an envelope, a set of encoding
rules, and a convention for representing remote procedure calls.
Unless experience with SOAP is a direct requirement for the open
position, knowing the specifics of the protocol, or how it can be
used in conjunction with HTTP, is not as important as identifying
it as a natural application of XML.

14. Why not just carry on extending HTML?

HTML was already overburdened with dozens of interesting but incompatible
inventions from different manufacturers, because it provides only
one way of describing your information.
XML allows groups of people or organizations to question C.13, create
their own customized markup applications for exchanging information
in their domain (music, chemistry, electronics, hill-walking, finance,
surfing, petroleum geology, linguistics, cooking, knitting, stellar
cartography, history, engineering, rabbit-keeping, question C.19,
mathematics, genealogy, etc).
HTML is now well beyond the limit of its usefulness as a way of
describing information, and while it will continue to play an important
role for the content it currently represents, many new applications
require a more robust and flexible infrastructure.

15. Why should I use XML?

Here are a few reasons for using XML (in no particular order).
Not all of these will apply to your own requirements, and you may
have additional reasons not mentioned here (if so, please let the
editor of the FAQ know!).
* XML can be used to describe and identify information accurately
and unambiguously, in a way that computers can be programmed to
‘understand’ (well, at least manipulate as if they could
understand).

* XML allows documents which are all the same type to be created
consistently and without structural errors, because it provides
a standardized way of describing, controlling, or allowing/disallowing
particular types of document structure. [Note that this has absolutely
nothing whatever to do with formatting, appearance, or the actual
text content of your documents, only the structure of them.]
* XML provides a robust and durable format for information storage
and transmission. Robust because it is based on a proven standard,
and can thus be tested and verified; durable because it uses plain-text
file formats which will outlast proprietary binary ones.
* XML provides a common syntax for messaging systems for the exchange
of information between applications. Previously, each messaging
system had its own format and all were different, which made inter-system
messaging unnecessarily messy, complex, and expensive. If everyone
uses the same syntax it makes writing these systems much faster
and more reliable.
* XML is free. Not just free of charge (free as in beer) but free
of legal encumbrances (free as in speech). It doesn’t belong to
anyone, so it can’t be hijacked or pirated. And you don’t have to
pay a fee to use it (you can of course choose to use commercial
software to deal with it, for lots of good reasons, but you don’t
pay for XML itself).
* XML information can be manipulated programmatically (under machine
control), so XML documents can be pieced together from disparate
sources, or taken apart and re-used in different ways. They can
be converted into almost any other format with no loss of information.
* XML lets you separate form from content. Your XML file contains
your document information (text, data) and identifies its structure:
your formatting and other processing needs are identified separately
in a style sheet or processing system. The two are combined at output
time to apply the required formatting to the text or data identified
by its structure (location, position, rank, order, or whatever).

16. Can you walk us through the steps necessary to parse
XML documents?

Superficially, this is a fairly basic question. However, the point
is not to determine whether candidates understand the concept of
a parser but rather have them walk through the process of parsing
XML documents step-by-step. Determining whether a non-validating
or validating parser is needed, choosing the appropriate parser,
and handling errors are all important aspects to this process that
should be included in the candidate’s response.

17. Give some examples of XML DTDs or schemas that you
have worked with.

Although XML does not require data to be validated against a DTD,
many of the benefits of using the technology are derived from being
able to validate XML documents against business or technical architecture
rules. Polling for the list of DTDs that developers have worked
with provides insight to their general exposure to the technology.
The ideal candidate will have knowledge of several of the commonly
used DTDs such as FpML, DocBook, HRML, and RDF, as well as experience
designing a custom DTD for a particular project where no standard
existed.

18. Using XSLT, how would you extract a specific attribute
from an element in an XML document?

Successful candidates should recognize this as one of the most
basic applications of XSLT. If they are not able to construct a
reply similar to the example below, they should at least be able
to identify the components necessary for this operation: xsl:template
to match the appropriate XML element, xsl:value-of to select the
attribute value, and the optional xsl:apply-templates to continue
processing the document.

Extract Attributes from XML Data
Example 1.
<xsl:template match=”element-name”>
Attribute Value:
<xsl:value-of select=”@attribute”/>
<xsl:apply-templates/>

</xsl:template>

19. When constructing an XML DTD, how do you create an
external entity reference in an attribute value?

Every interview session should have at least one trick question.
Although possible when using SGML, XML DTDs don’t support defining
external entity references in attribute values. It’s more important
for the candidate to respond to this question in a logical way than
than the candidate know the somewhat obscure answer.

20. How would you build a search engine for large volumes
of XML data?

The way candidates answer this question may provide insight into
their view of XML data. For those who view XML primarily as a way
to denote structure for text files, a common answer is to build
a full-text search and handle the data similarly to the way Internet
portals handle HTML pages. Others consider XML as a standard way
of transferring structured data between disparate systems. These
candidates often describe some scheme of importing XML into a relational
or object database and relying on the database’s engine for searching.
Lastly, candidates that have worked with vendors specializing in
this area often say that the best way the handle this situation
is to use a third party software package optimized for XML data.

