Set No. 1

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Define reaction rate constant. Develop an expression that facilitates calculation of units of rate constant for any order. [6]
 - (b) Determine equilibrium conversion of A at 373^{0} K for the following aqueous reaction.

A $\frac{k_1}{k_2}$ R $\Delta G^0 = -3375$ K cal/K mole $\Delta H_r^0 = -18,000$ K cal/K mole

Assume specific heats of all solutions are equal to that of water. [10]

2. (a) The decomposition of ammonia on a tungsten wire is carried out at 856⁰C and the following data are obtained.

Total Pressure, atm $0.300 \ 0.330 \ 0.359 \ 0.418$

Time, sec. 200 400 600 1000

Check whether the reaction follows zero order kinetics. Find the reaction velocity constant.

- (b) For a second order reaction show that the half life period is $t_{\frac{1}{2}} = 1 / \text{K } C_{A0}$ K- is the rate constant and C_{A0} - initial concentration of reactant. [8+8]
- 3. Experiment shows that the homogeneous decomposition of ozone proceed with a rate $-r_{03} = K[O_3]^2[O_2]^{-1}$. Suggest a two step mechanism to explain this rate and explain how would you further test this mechanism? [16]
- 4. The following reaction is carried out in mixed flow reactor at $400^{\circ}C$ and 1 atm. Pressure. The reaction is second order irreversible, $A \rightarrow B + C$. Find the size of the reactor needed to obtain 95% conversion when the feed rate is 100 gm/sec. And the reaction velocity constant at $500^{\circ}C$ is $0.4m^3/kg.mole.sec$. The molecular weight of A is 44. [16]
- 5. 100 litres/hour of radio active fluid having a half-life of 20 hr is to be treated by passing it through two ideal stirred tanks in series, V = 40,000 litres each. In passing through this system, how much has the activity decayed? [16]
- 6. For a gaseous reaction $A \hookrightarrow R+S$ taking place on a porous catalyst, derive the rate expression if the adsorption of A controls the overall reaction. [16]
- 7. Derive the expression for effectiveness factor in a single cylindrical pore for a first order reaction. [16]

Code No: RR320802

Set No. 1

- 8. Write detailed notes on:
 - (a) Integral and differential methods
 - (b) Total volume and total pressure methods. [8+8]

Set No. 2

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) For the reaction $2A + \frac{1}{2} B \rightarrow C$ write the relation between the rate of formation and disappearance of the three components of the reaction. [6]
 - (b) A reaction has the stoichiometric equation $2A \rightarrow R+S$ what is the order of the reaction. [2]
 - (c) The reaction with the following stoichiometric equation $A + \frac{1}{2} \to \mathbb{R}$ has the rate expression $r_A = kC_A C_B^{0.5}$. What is the rate expression for the reaction written as $2A + B \to 2\mathbb{R}$ [2]
 - (d) A certain reaction has a rate given by $r_A = 0.005C_A^2$, mol/cm^3 .min. If the concentration is to be expressed in mol/lit and time in hours, what would be the value and units of the reaction rate constant? [6]
- 2. (a) The first order homogeneous decomposition, A → 2.5 R is carried out in an isothermal batch reactor at 2 atm. With 20% inerts present, the volume increases by 60% in 20 min. In a constant volume reactor, find the time required for the pressure to reach 8 atm., if the initial pressure is 5 atm., 2 atm of which consists of inerts. [8]
 - (b) Explain how total volume and total pressure methods help in arriving at the kinetics of the given reaction. Derive relevant equations. [8]
- 3. Chemicals A, B and C combine to give R and S with steichiometry

$$\mathbf{A} + \mathbf{B} + \mathbf{C} \stackrel{k_1}{\underset{k_2}{\rightleftharpoons}} \mathbf{R} + \mathbf{S}$$

The observed rate is $r_R = K \frac{C_A C_B C_C}{C_R}$. The following mechanisms have been proposed to explain the observed kinetics. Mechanism I :

$$A + B \stackrel{k_1}{\underset{k_2}{\longrightarrow}} X + R$$
$$C + X \stackrel{k_1}{\underset{k_2}{\longrightarrow}} S$$
Mechanism II :
$$A + C \stackrel{k_1}{\underset{k_2}{\longrightarrow}} Y + R$$
$$B + Y \stackrel{k_1}{\underset{k_2}{\longrightarrow}} S$$

Code No: RR320802

- (a) Are these mechanisms consistent with the kinetic expression?
- (b) If neither is consistent, devise a scheme.
- 4. From the following data find a satisfactory rate equation for gas phase decomposition of $A \rightarrow R + S$, taking place isothermally in a mixed reactor.

Space time in Sec:	0.423	5.10	13.5	44.0	192.0			
Conversion :	0.22	0.63	0.75	0.88	0.96			
Initial concentration is 0.002 mole/lit.								

- 5. At present conversion is 2/3 for our elementary second-order liquid reaction $2A \rightarrow 2R$ when operating in an isothermal plug flow reactor with a recycle ratio of unity. What will be the conversion if the recycle stream is shut off? [16]
- 6. (a) Define a catalyst and describe its properties.
 - (b) Compare physical adsorption and chemisorption.
 - (c) What is an adsorption isotherm? Define. [6+6+4]
- 7. Equimolar quantities of A, B and D are fed continuously to a mixed flow reactor where they combine by the elementary reactions

$$\begin{array}{c} A+D \xrightarrow{k_1} R \\ B+D \xrightarrow{k_2} S \end{array} with \frac{k_2}{k_1} = 0.2 \end{array}$$

- (a) If 50% of the incoming A is consumed find what fraction of the products formed is R.
- (b) If 50% of the incoming D is consumed find what fraction of the products formed is R. [8+8]
- 8. Write brief notes on:
 - (a) Optimum temperature progression.
 - (b) Product distribution in multiple reactions. [8+8]

 $2 \mbox{ of } 2$

Set No. 2

[16]

3 Set No.

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Define reaction rate constant. Develop an expression that facilitates calculation of units of rate constant for any order. [6]
 - (b) Determine equilibrium conversion of A at 373^{0} K for the following aqueous reaction.

A
$$\frac{k_1}{k_2}$$
 R $\Delta G^0 = -3375$ K cal/K mole
 $\Delta H_r^0 = -18,000$ K cal/K mole

Assume specific heats of all solutions are equal to that of water. [10]

- 2. For the reaction in series $A \to R \to S$ with $k_1 \neq k_2$, find the maximum concentration of R and when it is reached in a batch reactor? k_1 and k_2 are the rate constants for the first and second reactions. Show what happens if $K_1 = K_2$. [16]
- 3. Experiment shows that the homogeneous decomposition of ozone proceed with a rate $-r_{03} = K[O_3]^2[O_2]^{-1}$. Suggest a two step mechanism to explain this rate and explain how would you further test this mechanism? [16]
- 4. At $600^0 K$ the gas phase reaction,

$$C_2H_4 + Br_2 \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C_2H_4Br_2$$

has rate constants $k_1 = 500 \ m^3 \ / \ (Kmole.hr)$ and $k_2 = 0.032 \ hr^1$. If a plug flow reactor is to be fed $600 \ m^3/hr$ of gas containing $60\% Br_2, 30\% C_2 H_4$ inerts by volume at $600^0 K$ and 1.5 atm., calculate the volume of reaction vessel required to obtain 60% conversion of ethylene. [16]

5. From steady-state kinetics runs in a mixed flow reactor, we obtain the following data on the reaction $A \rightarrow R$.

t, sec	$C_{AO}, \mathrm{mmol/liter}$	C_A , mmol/liter
60	50	20
35	100	40
11	100	60
20	200	80
11	200	100

Find the space time needed to treat a feed of $C_{AO} = 100 mmol/litre$ to 80% conversion.

Code No: RR320802

Set No. 3

(a) In a plug flow reactor

(b) In a mixed flow reactor. [8+8]

- 6. For the following gas phase solid catalyzed reaction: $A+B \Leftrightarrow R+S$. Obtain the expression for the rate of reaction if adsorption of A is the controlling step. [16]
- 7. For the first order reactions $A \xrightarrow{k_1} R \xrightarrow{k_2} S$ taking place in a plug flow reactor derive the expression for $C_{R,max}$ and $\tau_{p,opt}$. [16]
- 8. Write short notes on:
 - (a) Bio chemical reactions
 - (b) Catalytic reactions [8+8]

Set No. $\overline{4}$

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

1.	(a)	 i. For the reaction ¹/₂ O +2NO₂ → N₂O₅ Write the relation between t rates of formation and disappearance of all the components involved the reaction. ii. Write the units of specific reaction rate constant in the eqn: -r_A=0.08C_A 									tween the nvolved in [4] $=0.08C_A^{0.5}$	
	iii. Define the molecularity of a reaction with an exampleiv. Define elementary reaction with examplev. Define multiple reactions with example									[2] [2] [2] [2]		
	(b) Sketch the energies involved in the transformation of reactants to products exothermic and endothermic reaction.								oducts for [4]			
2.	 (a) E (b) T re li 	xplain how he reaction eactor. Using ters and material	total $2A \rightarrow$ ng the inutes	press R is s e follo	ure da tudiec wing c	ata hel l isoth lata o	lp in f lermal btain	inding at 36 the ra	the r ^{0}C in the eq	ate equ a const uation	uation. cant volu in units	[6] ume batch s of moles, [10]
	Tir Total m	ne, min Pressure, ım Hg	$\frac{3}{620}$	7 600	14 575	23 550	34 525	48 500	68 474	$\begin{array}{c} 95\\ 450 \end{array}$		
3.	(a) D	istinguish	betwe	en eler	menta	ry and	d non	eleme	ntary	reactio	ons.	

(b) Show that the following scheme

$$\begin{split} N_2O_5 &\rightleftharpoons NO_2 + NO_3^* \\ NO_2 + NO_3^* &\to NO^* + O_2 + NO_2 \\ NO^* + NO_3^* &\to 2NO_2 \\ \text{is consistent with and can explain the observed first order decomposition of} \\ N_2O_5. \end{split}$$
 [4+12]

4. The liquid phase reaction,

$$\begin{array}{l} \mathrm{A} + \mathrm{B} \xleftarrow[k_2]{k_2} \mathrm{R} + \mathrm{S} \\ \mathrm{k}_1 = 8 \text{ liter/mole. Min.} \\ \mathrm{k}_2 = 4 \text{ liter/ mole. Min.} \end{array}$$

is to take place in a 200 liter steady state mixed reactor. Two feed streams, one containing 3.0 mole A/liter, and the other containing 2.0 moles/liter are to be introduced in equal volumes into the reactor and 60 % conversion of limiting component

Set No. 4

is desired. What should be flow rate of each stream? Assume a constant density throughout. [16]

- 5. The elementary irreversible aqueous-phase reaction $A + B \rightarrow R + S$ is carried out isothermally as follows. Equal volumetric flow rates of two liquid streams are introduced into a 4-liter mixing tank. One stream contains 0.020 mol A/liter, the other 1.400 mol B/liter. The mixed stream is then passed through a 16-liter plug flow reactor. We find that some R is formed in the mixing tank, its concentration being 0.002 mol/liter. Assuming that the mixing tank acts as a mixed flow reactor, find the concentration of R at the exit of the plug flow reactor as well as the fraction of initial A that has been converted in the system. [16]
- 6. For the solid catalyzed reaction $A+B \Leftrightarrow R+S$ derive the expression for the rate of reaction if desorption of R is rate controlling. [16]
- 7. Derive the energy balance equation for adiabatic operation of PFR. [16]
- 8. Write short notes on:
 - (a) Law of mass action
 - (b) Single and multiple reactions.

[8+8]
