Model Question Paper (Theory)
 B.A/B.Sc. III Year Examination, March/April 2011 MATHEMATICS PAPER-III

Time:3Hrs
Maximum Marks:100
NOTE: Answer 6 questions from Section- A and 4 questions from Section -B choosing atleast one from each unit. Each question in Section- A carries 6 marks and each question in Section-B carries $\mathbf{1 6}$ marks.

SECTION-A $(6 \times 6=36)$

UNIT-I

1) Define a subspace. Prove that the intersection of two subspaces is again a subspace.
2) Define Linear transformation. Show that the mapping $T: V_{3}(R) \rightarrow V_{2}(R)$ defined as $T\left(a_{1}, a_{2}, a_{3}\right)=\left(3 a_{1}-2 a_{2}+a_{3}, a_{1}-3 a_{2}-2 a_{3}\right)$ is a linear transformation from $V_{3}(R)$ in to $V_{2}(R)$.

UNIT-II

3) Find all eigen values of the matrix $\left[\begin{array}{lll}3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right]$.
4) Define orthogonal set. Show that any orthogonal set of non-zero vectors in an inner product space V is linearly independent.

UNIT-III

5) Evaluate $\iint x^{2} y^{2} d x d y$ over the domain $\left\{(x, y): x \geq 0 ; y \geq 0 ;\left(x^{2}+y^{2}\right) \leq 1\right\}$.
6) Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the domain bounded by $x y=1 ; y=0 ; y=x ; x=2$.

UNIT-IV

7) Define irrotational vector. Show that $A=\left(6 x y+z^{3}\right) i+\left(3 x^{2}-z\right) j+\left(3 x z^{2}-y\right) k$ is Irrotational. Find φ such that $A=\nabla \varphi$.
8) Evaluate \iint A.n $d s$ where $A=18 z i-12 j+3 y k$ and S is that part of the plane $2 x+3 y+6 z=12$ which is located in first octant.

SECTION-B ($4 \times 16=64$)

UNIT-I

9) a) Define Basis of a vector space. Prove that any two basis of a finite dimensional vector Space $V(F)$ have same number of elements.
b) If W_{1}, W_{2} are two subspaces of a finite dimensional vector Space $V(F)$ then

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right) .
$$

10) a) State and prove Rank and Nullity theorem in linear transformation.
b) Show that linear operator T defined on R^{3} by $T(x, y, z)=(x+z, x-z, y)$ is invertible. And hence find T^{-1}.

UNIT-II

11) a) Prove that distinct characteristic vectors of T corresponding to distinct characteristic of T are linearly independent.
b) Let T be the linear operator on R^{3} which is represented in standard ordered basis by the matrix $\left[\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right]$. Prove that T is diagonalizable.
12) a) State and prove schwarz's inequality .
b) Apply the Gram-Schmidt process to the vector $\beta_{1}=(1,0,1) ; \beta_{2}=(1,0,-1)$;
$\beta_{3}=(0,3,4)$ to obtain an orthonormal basis for $V_{3}(R)$ with the standard inner product.

UNIT-III

13) a) Prove the sufficient condition for the existence of the integral.
b) Verify that $\iint_{R}\left(x^{2}+y^{2}\right) d y d x=\iint_{R}\left(x^{2}+y^{2}\right) d x d y$ where the domain R is the triangle bounded by the lines $y=0, y=x, x=1$.
14)a) Prove the equivalence if a double integra with repeated integrals.
b) Evaluate the following integral: $\iint \frac{x-y}{x+y} d x d y$ over $[0,1 ; 0,1]$.

UNIT-IV

15) a) For any vector A, Prove that $\nabla \times(\nabla \times A)=\nabla(\nabla . \mathrm{A})-\nabla^{2} A$.
b) If $U=3 x^{2} y ; V=x z^{2}-2 y$. Evaluate $\operatorname{grad}[(\operatorname{gradU}) \cdot(\operatorname{gradV})]$.
16) a) State and prove Green's theorem in a plane.
b) Verify stoke's theorem for $A=(2 x-y) i-y z^{2} j-y^{2} z k$. where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is the boundary.
