B.Tech II Year II Semester (R09) Supplementary Examinations December/January 2014/2015

STRENGTH OF MATERIALS - II

(Civil Engineering)

Time: 3 hours
Max. Marks: 70

Answer any FIVE questions
 All questions carry equal marks

1 A steel cylinder is 1 m inside diameter and is to be designed for an internal pressure of 8 $\mathrm{MN} / \mathrm{m}^{2}$. Calculate the thickness if the maximum shearing stress is not to exceed $35 \mathrm{MN} / \mathrm{m}^{2}$. Calculate the increase in volume, due to working pressure, if the cylinder is 6 m long with closed ends. $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$, Poisson's ratio $=1 / 3$.

Differentiate between a thin cylinder and a thick cylinder. Find an expression for the radial pressure and hoop stress at any point in case of a thick cylinder.

A safety valve of 80 mm diameter is to blow off at a pressure of $1 \mathrm{~N} / \mathrm{mm}^{2}$ by gauge. It is held by a close coil helical spring of circular steel wire. The mean diameter is 150 mm and initial compression is 20 mm . Find the diameter of steel wire and the number of coils necessary if the shear stress allowed is $80 \mathrm{~N} / \mathrm{mm}^{2}$. Take G $=0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

5 (a) Derive the Euler's buckling load for a column with both ends hinged.
(b) Find the ratio of buckling strength of a solid column to that of a hollow column of the same material and having the same cross-sectional area. The internal diameter of the hollow column is half of its external diameter. Both the columns are hinged and the same length.

6 Explain the following:
(a) Core of section.
(b) Combined stresses.
(c) Eccentric loading.
(d) Slenderness ratio.

7 Find the centroidal principal moments of inertia of a equal angle section $30 \times 30 \times 8 \mathrm{~mm}$.

8 A horizontal circular bow girder of radius 5 m is continuous over five equally spaced supports. It carries a vertical u.d.I. of $50 \mathrm{KN} / \mathrm{m}$. Obtain the B.M, torsional moment and S.F. diagrams for one span indicating the critical values.

