B.Tech II Year II Semester (R09) Supplementary Examinations December/January 2014/2015

SWITCHING THEORY \& LOGIC DESIGN

(Common to EEE, ECE, EIE, E.Con.E \& ECC)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Explain the ASCII code with table.
(b) Encode the following text in to 7-bit ASCII code:

JNTU ANANTAPUR

2 (a) Prove that OR-AND network is equivalent to NOR-NOR network.
(b) Simplify the following Boolean functions to minimum number of literals:
(i) $x^{\prime}+y^{\prime}+x y z^{\prime}$
(ii) $\left(x^{\prime}+x y z^{\prime}\right)+\left(x^{\prime}+x y z^{\prime}\right)\left(x+x^{\prime} y^{\prime} z\right)$
(c) Realize XOR gate using minimum number of NAND gates.

3 (a) What are the advantages of Tabulation method over K-map?
(b) Simplify the following Boolean function using Tabulation method:

$$
Y(A, B, C, D)=\sum(1,3,5,8,9,11,15)
$$

4 (a) Design 4-bit even parity generator. Mention truth table.
(b) Design BCD to XS3 code converter using a 4 bit Full- adders MSI circuit.

5 (a) Find the minimal threshold-logic realization for the function:
$\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(2,3,6,7,10,12,14,15)$
(b) Compare programmable logic devices.
$6 \quad$ With a neat sketch explain 4-bit Johnson counter
7 Find the equivalence partition and the corresponding reduce machine in standard form.

PS	$\mathbf{N S}_{\mathbf{1}} \mathbf{Z}$	
	$\mathbf{X = \mathbf { 0 }}$	$\mathbf{X = 1}$
A	$\mathrm{D}, 0$	$\mathrm{H}, 1$
B	$\mathrm{~F}, 1$	$\mathrm{C}, 1$
C	$\mathrm{D}, 0$	$\mathrm{~F}, 1$
D	$\mathrm{C}, 0$	$\mathrm{E}, 1$
E	$\mathrm{C}, 1$	$\mathrm{D}, 1$
F	$\mathrm{D}, 1$	$\mathrm{D}, 1$
G	$\mathrm{D}, 1$	$\mathrm{C}, 1$
H	$\mathrm{B}, 1$	$\mathrm{~A}, 1$

8 (a) Draw the ASM chart for binary divider.
(b) Draw the state diagram for a full adder circuit and convert it to ASM chart.

