Digital Signal Processing (April/May-2013, Set-1) JNTU-Anantapur
Code No.: 9A04603/R09

III B.Tech. II Semester Regular \& Supplementary Examinations et April/May - 2013

DIGITAL SIGNAL PROCESSING
(Common to EIE, E.Con.E, ECC and ECE)
Time: 3 Hours
Max. Marks: 70
Answer any FIVE Questions
All Questions carry Equal Marks

1. State and prove following properties of DTFT,
(i) Periodicity
(ii) Time-shifting
(iii) Multiplication by ' n ' in time domain.
2. (a) Show that DFS of periodic sequences $x_{p}(n)$ is periodic with same period.
(b) State and prove duality property of DFS.
3. Write short notes on the following,
(i) Butterfly computation
(ii) Goertzel algorithm
(iii) In-place computations
(iv) Bit reversal
4. Obtain the direct form realization of following system functions with minimum number of multipliers
(i) $\mathrm{H}(\mathrm{z})=(1 / 2)+(1 / 4) \mathrm{z}^{-1}+(1 / 4) \mathrm{z}^{-2}+(1 / 2) \mathrm{z}^{-3}$.
(ii) $\mathrm{H}(\mathrm{z})=\left[\left(1-\mathrm{Z}^{-1}\right)\left[(1 / 2)-(1 / 4) \mathrm{Z}+(1 / 2) \mathrm{z}^{-2}\right]\right]$
5. (a) Compare the backward and forward difference methods of digital filter approximations.
(b) Convert following analog filter transfer function into digital filter transfer function using backward difference method $\mathrm{H}(\mathrm{s})=1 /(\mathrm{s}+2)^{2}+16$.
6. (a) Explain characterization of FIR filters.
(b) Sketch and explain the frequency response of non-ideal digital highpass filter.
7. The signal $x(n)$ is up sampled by factor 2, then it is passed through ideal low pass filter with cutoff frequency of F_{C} and down sampled by factor by 3 . Sketch the input and output spectrum for the case $X(F)=\operatorname{tri}(4 \mathrm{~F})$ with $\mathrm{F}_{\mathrm{C}}=0.15$.
8. (a) Discuss about spectral analysis of sinusoidal signals.
(b) With necessary block diagrams explain about discrete multi tone receiver.
B.Tech. III-Year II-Sem.
