Subject Code: R13102/R13

Set No - 1

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014

MATHEMATICS-I

(Common to All Branches)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of Part-A and Part-B Answering the question in **Part-A** is Compulsory, Three Questions should be answered from Part-B ****

PART-A

- Find the orthogonal trajectories of the curve $r = a(1 + \cos \theta)$. 1.(i)
- (ii) If $x = rsin\theta cos\varphi$, $y = rsin\theta sin\varphi$, $z = r cos\theta$, find $\frac{\partial(r,\theta,\varphi)}{\partial(x,y,z)}$, given that $\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)} = r^2 sin\theta$. (iii) Find the Laplace transform of $f(t) = \begin{cases} t, \ 0 < t < 1 \\ 0, \ t > 1 \end{cases}$ using Heaviside function. (iv) Let the heat conduction in a thin metallic bar of length L is governed by the equation
- $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$, t > 0. If both ends of the bar are held at constant temperature zero and the bar is initially has temperature f(x), find the temperature u(x,t).
- (v) Solve $p^2 + pq = z^2$. (vi) Find $\frac{1}{D^2 - 4D + 4} x^2 sinx$. [4+4+4+3+3]

PART-B

- $y(2x^2 xy + 1)dx + (x y)dy = 0$ 2.(a) Solve
 - (b) Find the complete solution of $y'' + 2y = x^2 e^{3x} + e^x \cos 2x$ [8+8]

3.(a) Solve
$$\frac{dy}{dx} + xsin2y = x^3cos^2y$$

- (b) Find the solution of $\frac{d^2y}{dx^2} + 4y = Sin 3x + \cos 2x$. [8+8]
- 4.(a) Find the Laplace transform of $f(t) = \frac{\cos at \cos bt}{t}$. (b) If $x = \sqrt{vw}$, $y = \sqrt{uw}$, $z = \sqrt{uv}$ and $u = rsin \theta cos \varphi$, $v = r sin \theta sin \varphi$ and $w = rcos \theta$, find $\frac{\partial(x, y, z)}{\partial(r \theta, w)}$ [8+8]
- Expand $f(x, y) = e^{y} \ln(1 + x)$ in powers of x and y using MacLaurin's Series 5.(a)
 - Solve $y'' 8y' + 15y = 9te^{2t}$, y(0) = 5 and y'(0) = 10 using Laplace transforms (b)

- 6.(a) Solve $(y + xz)p (x + yz)q = x^2 y^2$. (b) Solve the partial differential equation px+qy = 1. [8+8]
- 7.(a) Find the partial differential equation of all spheres whose centers lie on z- axis.
 - Find the solution of the wave equation $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$, if the initial deflection is (b)

$$f(x) = \begin{cases} \frac{2k}{l}x & \text{if } 0 < x < l/2\\ \frac{2k}{l}(l-x) & \text{if } \frac{l}{2} < x < l \end{cases} \text{ and initial velocity equal to } 0.$$
[8+8]

Page 1 of 1

1"1'1"1"11"11'1

Subject Code: R13102/R13

Set No - 2

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014

MATHEMATICS-I

(Common to All Branches)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of Part-A and Part-B Answering the question in **Part-A** is Compulsory, Three Questions should be answered from Part-B ****

PART-A

Find the complete solution of $(D^4 + 16)y = 0$. 1.(i)

(ii) If
$$x = r\cos\theta$$
, $y = r\sin\theta$, $z = z$, find $\frac{\partial(r,\theta,z)}{\partial(x,y,z)}$, given that $\frac{\partial(x,y,z)}{\partial(r,\theta,z)} = r$.

- (iii) Solve $x^2p^2 + y^2q^2 = z^2$.
- (iv) Find the solution, by Laplace transform method, of the integro-differential equation $y' + 3y + 2\int_0^t y(t)dt = t$
- Find the differential equation of the orthogonal trajectories for the family of parabola (v) through the origin and foci on y-axis.
- (vi) Find the solution of wave equation in one dimension using the method of separation of variables.

[3+3+4+4+4+4]

[8+8]

[8+8]

[8+8]

[8+8]

PART-B

2.(a) Solve
$$y(y^2 - 2x^2)dx + x(2y^2 - x^2)dy = 0$$

Find the complete solution of y'' + 5y' - 6y = sin4x sinx. (b)

3.(a) Solve
$$\cos x \, dy = y(\sin x - y)dx$$
.
(b) Find the solution of $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 2xe^{3x} + 3e^x \cos 2x$.

- Find the Laplace transform of $f(t) = \int_0^t e^{-u} \cos u \, du$. 4.(a)
- Find the shortest distance from origin to the surface $xyz^2 = 2$. (b)
- Find $\frac{\partial(u,v)}{\partial(r,\theta)}$ if u = 2axy and $v = a(x^2 y^2)$, where $x = r\cos\theta$ and $y = r\sin\theta$. Solve $y'' 8y' + 15y = 9te^{2t}$, y(0) = 5 and y'(0) = 10 using Laplace transforms 5.(a)
 - (b) [8+8]
- 6.(a) Form the partial differential equation by eliminating the arbitrary function from xyz = f(x + y + z).

(b) Find the solution of
$$(D^2 - DD' - 2D'^2)z = (y - 1)e^x$$
, where $D = \frac{\partial}{\partial x}$ and $D' = \frac{\partial}{\partial y}$.
[8+8]

- 7.(a) Solve the partial differential equation xzp + yzq = xy.
 - (b) Find the temperature in a bar of length l which is perfectly insulated laterally and whose ends O and A are kept at 0°C, given that the initial temperature at any point P of the rod is given by f(x).

Page 1 of 1

|"|"|"|"||"||"||"||

Set No - 3

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014

MATHEMATICS-I

(Common to All Branches)

Max. Marks: 70

Question Paper Consists of Part-A and Part-B Answering the question in **Part-A** is Compulsory, Three Questions should be answered from Part-B ****

PART-A

- Find the dimensions of rectangular box of maximum capacity whose surface area is S. 1.(i)
- Find the orthogonal trajectories of the family of curves $x^{2/3} + y^{2/3} = a^{2/3}$. (ii)
- (iii) A generator having emf 100 volts is connected in series with a 10 ohm resistor and an inductor of 2 henries. If the switch is closed at a time t = 0, find the current at time t > 0.
- (iv) Find the Laplace transform of $f(t) = \begin{cases} t, & 0 < t < 1 \\ 0, & t > 1 \end{cases}$ using Heaviside function.
- (v) Solve pq+qx = y.

Subject Code: R13102/R13

Time: 3 hours

(vi) Find the solution of $2x \frac{\partial z}{\partial x} - 3y \frac{\partial z}{\partial y} = 0$ by the method of separation of variables.

[4+4+4+3+3]

[8+8]

[8+8]

[8+8]

- $\frac{\mathbf{PART-B}}{y(1+xy)dx + x(1-xy)dy = 0}$ Solve 2.(a)
- Find the complete solution of $y'' + 4y = e^x sin^2 x$. (b)

3.(a) Solve
$$2x y' + y = \frac{2x^2}{y^3}, y(1) = 2.$$

Find the solution of $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} - 5y = e^{2x} + 3\cos(4x+3).$ (b)

- Find the Laplace transform of $f(t) = te^{-2t}\cos t$. Find the maxima and minima of $x^3 + 3xy^2 15x^2 15y^2 + 72x$. 4.(a) (b)
- 5.(a)
- Expand $f(x, y) = e^{xy}$ in powers of (x-1) and (y-1). Solve $y'' + 7y' + 10 y = 4e^{-3t}$, y(0) = 0 and y'(0) = -1 using Laplace transforms. (b) [8+8]
- Form the partial differential equation by eliminating the arbitrary constants 'a' and 'b' 6.(a) from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.

(b) Find the solution of
$$(4D^2 + 12DD' + 9D'^2)z = e^{3x-2y}$$
, where $D = \frac{\partial}{\partial x}$ and $D' = \frac{\partial}{\partial y}$.
[8+8]

- 7.(a) Solve the partial differential equation $p \tan x + q \tan y = \tan z$.
- (b) A tightly stretched string with fixed end points x=0 and x=1 is initially in a position given by $y = y_0 sin^3 \frac{\pi x}{l}$. If it is released from rest from this position, find the displacement v(x,t).

[8+8]

Page 1 of 1

1"1'1"1"11"11'1

Subject Code: R13102/R13

Set No - 4

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014

MATHEMATICS-I

(Common to All Branches)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B** *****

PART-A

- 1.(i) Find the distance from the centre at which the velocity in simple harmonic motion will be 1/3rd of the maximum.
 - (ii) Find a point with in a triangle such that the sum of the squares of its distances from the three vertices is minimum.
 - (iii) Find the solution, by Laplace transform method, of the integro-differential equation $y' + 4y = \int_0^t y(t) dt$, y(0) = 0.
 - (iv) Uranium disintegrates at a rate proportional to the amount present at that time. If M and N grams of Uranium that rae present at times T_1 and T_2 respectively, find the half life of Uranium.
- (v) Find the complete solution of $(D^3 3D^2D' + 3DD'^2 D'^3)z = 0$.

(vi) Solve
$$z^2 = 1 + p^2 + q^2$$
.
[4+4+4+3+3]

PART- B

2.(a) Solve
$$(3y^2 + 4xy - x)dx + x(x + 2y)dy = 0$$

(b) Find the solution of
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 6y = sin4x cosx$$
.

3.(a) Find the complete solution of $y'' + 2y = x^2 e^{3x} + e^x \cos 2x$.

(b) Solve
$$x z' + z \log z = z (\log z)^2$$
.

4.(a) Find the Laplace transform of
$$f(t) = te^{2t}cos 2t$$
.

(b) If
$$u = sin^{-1}(\frac{x^3 + y^3}{\sqrt{x} + \sqrt{y}})$$
, prove that $xu_x + yu_y = \frac{5}{2} \tan u$.

5.(a) If
$$w = (y - z)(z - x)(x - y)$$
, find the value of $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z}$.

(b) Solve
$$y'' + 2y' + 5y = e^{-t} \sin t$$
, $y(0) = 0$ and $y'(0) = 1$ using Laplace transforms.

[8+8]

[8+8]

[8+8]

[8+8]

[8+8]

6.(a) Form the partial differential equation by eliminating the arbitrary constants 'a' and 'b' from $z = ax + by + a^2 + b^2$.

(b) Using method of separation of variables, solve
$$u_{xt} = e^{-t} cosx$$
 with $u(x, 0) = u(0, t) = 0$.
[8+8]

- 7.(a) Find the temperature in a thin metal rod of length L, with both ends insulated and with initial temperature in the rod is $sin(\frac{\pi x}{L})$.
 - (b) Solve the partial differential equation $p x^2 + qy^2 = z^2$.

Page 1 of 1

|"||"|"||"||"

 (Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Solve $(x^2 + y^2 a^2)x \, dx + (x^2 y^2 b^2)y \, dy = 0.$ [7+8]
 - (b) If air is maintained at $20^{\circ} C$ and the temperature of the body cools from $80^{\circ} C$ to $60^{\circ} C$ in 10 minutes, find the temperature of the body after 30 minutes.
- 2. (a) Solve $(D^2 + a^2)y = Sec ax$ (b) Solve $(D^2 + 4)y = e^x + Sin 2x$ [8+7]

3. (a) If
$$V = \log (x^2 + y^2) + x - 2y$$
 find $\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial^2 V}{\partial x^2}, \frac{\partial^2 V}{\partial y^2}$.
(b) If $U = xe^{xy}$ where $x^2 + y^2 + 2xy = 1$, find $\frac{\partial^2 U}{\partial x^2}$. [8+7]

- 4. (a) Trace the curve $r = 2 + 3 \sin\theta$. (b) Trace the curve $y^2(2a - x) = x^3$. [8+7]
- 5. (a) Find the surface of the solid generated by revolution of the lemniscate $r^2 = a^2 \cos^2 \theta$ about the initial line.
 - (b) Show that the whole length of the curve $x^2(a^2 x^2) = 8a^2y^2$ is $\pi a\sqrt{2}$. [8+7]

6. (a) Show that
$$\int_0^{4a} \int_{\frac{y^2}{4a}}^{\frac{y}{2}-y^2} \frac{x^2-y^2}{x^2+y^2} dx dy = 8a^2 \left(\frac{\pi}{2} - \frac{5}{3}\right)$$
.

- (b) Evaluate $\iint_R y dx dy$ where R is the domain bounded by y-axis, the curve $y=x^2$ and the line x + y = 2 in the first quadrants. [8+7]
- 7. (a) If $V = e^{xyz}(i+j+k)$, find curl V.
 - (b) Find the constants a and b so that the surface ax^2 -byz = (a+2)x will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1,-1,2) [8+7]
- 8. (a) Show that the area of the ellipse $x^2/a^2 + y^2/b^2 = 1$ is πab
 - (b) If $f = (2x^2 3z)i 2xyj 4xzk$, evaluate (i) $\int_v \nabla \cdot f \, dV$ and (ii) $\int_v \nabla \times f \, dV$ where V is the closed region bounded by x = 0, y = 0, z = 0, 2x + 2y + z = 4. [8+7]

|"|'|"|"||"||'

 (Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) Solve $e^y \left(1 + \frac{dy}{dx}\right) = e^x$
 - (b) Show that the family of curves $\frac{x^2}{a^2+\lambda} + \frac{y^2}{a^2+\lambda} = 1$, where ' λ ' is a parameter is self orthogonal. [8+7]
- 2. (a) Solve $(D^2 + 9)y = 2 \cos^2 x$. (b) Solve $\frac{d^2y}{dx^2} + 4y = 2e^x Sin^2 x$. [8+7]
- 3. (a) Calculate the approximate value of $\sqrt{10}$ to four decimal places using Taylor's theorem.
 - (b) Find 3 positive numbers whose sum is 600 and whose product is maximum.

[8+7]

- 4. (a) Trace the curve $y = x^2 (x^2 4)$. (b) Trace the curve $r = \cos\theta$. [8+7]
- 5. (a) The figure bounded by a parabola and the tangents at the extremities of its latusrectum revolves about the axis of the parabola, Find the volume of the solid thus generated. [8+7]
 - (b) The segment of the parabola $y^2=4ax$ which is cutoff by the latus rectum revolves about the directrix. Find the volume of rotation of the annular region.
- 6. (a) Evaluate $\int \int (x+y)^2 dx$ dy. over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (b) Transform the following to Cartesian form and hence evaluate $\int_0^{\pi} \int_0^a r^3 \sin\theta dr d\theta$.
- 7. (a) Prove that $\nabla \mathbf{r} = \overline{r}/\mathbf{r}$
 - (b) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z=x^2 + y^2-3$ at the point (2,-1,2). [8+7]
- 8. (a) Evaluate $\iint_S (yzi+zxj+xyk) dS$ where S is the surface of the sphere $x^2+y^2+z^2=a^2$ in the first octant.
 - (b) Evaluate $\oint_c (x^2 2xy)dx + (x^2y + 3)dy$ around the boundary of the region defined by $y^2 = 8x$ and x = 2. [8+7]

1"1"1"1"11"11"

 (Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

[8+7]

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) Solve y(Sinx y) dx = Cos x dy
 - (b) If the temperature of air is maintained at $20^{\circ} C$ and the temperature of the body cools from $100^{\circ} C$ to $80^{\circ} C$ in 10 minutes, find the temperature of the body after 20 minutes. [8+7]

2. (a) Solve
$$(D^2 - 4D + 13)y = e^{2x}$$

(b) Solve $(D^2 - 3D + 2)y = Cosh x$

3. (a) If
$$r + s + t = x$$
, $s + t = xy$, $t = xyz$, find $\frac{\partial(r,s,t)}{\partial(x,y,z)}$.
(b) Find the extreme points of $f(x, y) = xy + \frac{8}{x} + \frac{8}{y}$. [8+7]

- 4. (a) Trace the curve $y = 5 \cosh\left(\frac{x}{5}\right)$.
 - (b) Trace the curve $y^2 = (4 x)(3 x^2)$.. [8+7]
- 5. (a) Find the length of the arc of the curve $y = \log(\sec x)$ from $x = o \tan \frac{\pi}{3}$.
 - (b) Find the perimeter of the loop of the curve $3ay^2 = x(x-a)^2$. [8+7]
- 6. (a) Evaluate $\int \int r dr d\theta$ over the region bounded by the cardioid $r=a(1+\cos\theta)$ and out side the circle r=a.

(b) Change the order of Integration & evaluate
$$\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$$
 [8+7]

- 7. (a) Prove that $(\mathbf{F} \times \nabla) \times \overline{r} = -2\mathbf{F}$
 - (b) Determine the constant a so that the vector V = (x+3y)i+(y-z)j+(x+az)k is solenoidal. [8+7]
- 8. Apply Stokes theorem, to evaluate $\oint_c ydx + zdy + xdz$ where C is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and x + z = a. [15]

1"1"1"1"11"11"

 (Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) Solve $(x+1)\frac{dy}{dx} y = e^{3x}(x+1)^2$
 - (b) Find the orthogonal trajectory of the family of curves $x^{2/3} + y^{2/3} = a^{2/3}$, where 'a' is a parameter [8+7]

2. (a) Solve
$$(D^3 - 6D^2 + 11D - 6)y = e^{-2x} + e^{-3x}$$

(b) Solve $\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 15y = 0$ [8+7]

3. (a) If
$$a = \frac{yz}{x}$$
, $b = \frac{xz}{y}$, $c = \frac{xy}{z}$, find $\frac{\partial(x,y,z)}{\partial(a,b,c)}$.
(b) Find the minimum value of $x^2 + y^2 + z^2$, give that $xyz = a^3$ [8+7]

- 4. (a) Trace the curve $r = \cos 4\theta$. (b) Trace the curve $y^2(1-x) = x^2(1+x)$..
 [8+7]
- 5. Prove that the volume of the solid generated by the revolution about the x axis of the loop of the curve $x = t^2$, $y = t \frac{1}{3}t^3$ is $\frac{3\pi}{4}$. [8+7]

6. (a) By changing the order of integration evaluate $\int_0^1 \int_0^{\overline{y_2-x^2}} \frac{x}{\overline{y_2^2+y^2}} dy dx$.

(b) Evaluate $\int_0^a \int_{a-x}^{y} y \, dx \, dy$ by using change of order of integration . [8+7]

- 7. (a) If $V = e^{xyz}(i+j+k)$, find curl V.
 - (b) Find the constants a and b so that the surface $ax^2-byz = (a+2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1,-1,2) [8+7]
- 8. (a) Use divergence theorem to evaluate $\iint_S (x^3i + y^3j + z^3k) Nds$, and S is the surface of the sphere $x^2+y^2+z^2=r^2$.

(b) Using Green's theorem, Find the area bounded by the hypocycloid $x^{2/3}+y^{2/3}=a^{2/3}$, a>0. Given that the parametric equations are $x = a \cos^3\theta$, $y = a \sin^3\theta$. [8+7]

1"1"1"1"11"11"