Code No: A109100102 Set No. 1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD I B.Tech. II Mid Examinations, March – 2011 MATHEMATICS – I Objective Exam Name: ______ Hall Ticket No. _________

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10.

I. Choose the correct alternative:

- 1. The asymptote for the curve is $y^2 = x^2 \frac{(a+x)}{a-x}$ [] (a)x = a (b) x = -a (c) x = 0 (d) y = 0
- 2. The Envelope of the family of curves $y = mx + \sqrt{a^2 m^2 + b^2}$ is [] (a) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (b) $\frac{y^2}{a^2} - \frac{y^2}{b^2}$ (c) $y^2 = yax$ (d) $xy = c^2$

3. The surface area of the solid generated by the revolution of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about its minor axis is a) $4\pi a \int_{0}^{\pi/2} \cos\theta \sqrt{b^2 + a^2 e^2 \sin^2\theta d\theta}$ b) $2\pi a \int_{0}^{\pi/2} \cos\theta \sqrt{b^2 + a^2 e^2 \sin^2\theta d\theta}$

c)
$$4\pi a \int_{0}^{\pi/2} \sin \theta \sqrt{b^2 + a^2 e^2 \sin^2 \theta d\theta}$$
 d) $2\pi a \int_{0}^{\pi} \sin \theta \sqrt{b^2 + a^2 e^2 \sin^2 \theta d\theta}$

4. In Evaluating $\iint xy(x+y)dxdy$ over the region between $y = x^2$ and y = x, the limits are [(a) x = 0 to 1, xy = 0 to 1 (b) x = 0 to 1, y = 0 to x(c) x = 0 to 1, y = 0 to x^2 (d) x = 0 to 1, $y = x^2$ to x

- 5. The equation of the curve for which the length of sub tangent is constant is [] a) xy = K b) $y = C e^{\frac{x}{K}}$ c) y = 4ax d) $y = C x e^{\frac{x}{K}}$
- 6. Radius of curvature at (0,0) of $x^3 + 3x^2y 4y^3 + y^2 6x = 0$ is [] (a) 6 (b) 2 (c) 3 (d) 0
- 7. The curve $y(x^2 1) = x^2 + 1$ is symmetrical about (a) x - ax is (b) y - ax is (c) y = x (d) y = -x

8. If for the curve $y\frac{dy}{dx} = 0$ at (2,3) then the x coordinate of center of curvature \overline{x} is [] (a) 0 (b) 1 (c) 3 (d) 2

Cont.....2

ſ

9. The solution of the differential equation $e^{y-x}dy - dx = x^2e^{-x}dx$ [] (a) $e^x + e^y = c$ (b) $e^x = ce^y$ (c) $e^y - e^x = x^2$ (d) $e^y = e^x + \frac{x^3}{2} + c$

10. The differential equation of orthogonal trajectories of $ay^2 = x^{-3}is$ [a) y dy = x dx b) 2y dy = 3x dx c) 3y dy = -2x dx d) y dy = -2 x dx

II Fill in the Blanks

11. The volume of the solid generated by revolving the curve $r = a(1-\cos \theta)$ about the initial line is _____

12.
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} \left(a^{2}-x^{2}-y^{2}\right) dx dy = \underline{\qquad}$$

- 13. The area cut off by the latus rectum from the parabola $y^2 = 4ax$ is _____
- 14. The solution of the differential equation xy $\frac{dy}{dx} = y + 2$ is _____
- 15. If the air is maintained at 30° C and the temperature of the body cools from 80°C to 60°C in 12 minutes, then the value of K is _____
- 16. The number of loops for the curve $r = a \cos \theta$
- 17. The area of one loop of the curve $r = a \cos 2\theta$ is _____
- 18. The solution of the differential equation $\frac{dy}{dx} = (x+y)^2$ is _____
- 19. The nature of the differential equation $y \sin 2x dx (y^2 + \cos^2 x) dy = 0$
- 20. The equation of the curve for which the length of sub normal is constant K is_____

-000-

Set No. 1

Code No: A109100102 Set No. 2 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD I B.Tech. II Mid Examinations, March – 2011 MATHEMATICS – I Objective Exam Name: _____ Hall Ticket No. A

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10.

I. Choose the correct alternative:

1.	In Evaluating $\iint xy(x+y)dxdy$ over	the region between $y = x^2$ and $y = x$, the limits are []
	(a) $x = 0$ to 1, $xy = 0$ to 1	(b) $x = 0$ to 1, $y = 0$ to x	
	(c) $x = 0$ to 1, $y = 0$ to x^2	(d) $x = 0$ to 1, $y = x^2$ to x	

2. The equation of the curve for which the length of sub tangent is constant is [] a) xy = K b) $y = C e^{\frac{x}{K}}$ c) y = 4ax d) $y = C x e^{\frac{x}{K}}$

- 3. Radius of curvature at (0,0) of $x^3 + 3x^2y 4y^3 + y^2 6x = 0$ is [] (a) 6 (b) 2 (c) 3 (d) 0
- 4. The curve $y(x^2-1) = x^2 + 1$ is symmetrical about (a) x - ax is (b) y - ax is (c) y = x (d) y = -x

5. If for the curve $y\frac{dy}{dx} = 0$ at (2,3) then the x coordinate of center of curvature \overline{x} is [(a) 0 (b) 1 (c) 3 (d) 2

6. The solution of the differential equation $e^{y-x}dy - dx = x^2e^{-x}dx$ [] (a) $e^x + e^y = c$ (b) $e^x = ce^y$ (c) $e^y - e^x = x^2$ (d) $e^y = e^x + \frac{x^3}{3} + c$

7. The differential equation of orthogonal trajectories of $ay^2 = x^{-3}is$ [a) y dy = x dx b) 2y dy = 3x dx c) 3y dy = -2x dx d) y dy = -2 x dx

8. The asymptote for the curve is
$$y^2 = x^2 \frac{(a+x)}{a-x}$$
 [
(a)x = a (b) x = -a (c) x = 0 (d) y = 0

9. The Envelope of the family of curves
$$y = mx + \sqrt{a^2 m^2 + b^2}$$
 is []
(a) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (b) $\frac{y^2}{a^2} - \frac{y^2}{b^2}$ (c) $y^2 = yax$ (d) $xy = c^2$

Cont....2

[

]

]

:2:

ſ

]

10. The surface area of the solid generated by the revolution of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about its minor axis

is a) $4\pi a \int_{0}^{\pi/2} \cos\theta \sqrt{b^2 + a^2 e^2 \sin^2\theta d\theta}$ b) $2\pi a \int_{0}^{\pi/2} \cos\theta \sqrt{b^2 + a^2 e^2 \sin^2\theta d\theta}$ c) $4\pi a \int_{0}^{\pi/2} \sin\theta \sqrt{b^2 + a^2 e^2 \sin^2\theta d\theta}$ d) $2\pi a \int_{0}^{\pi} \sin\theta \sqrt{b^2 + a^2 e^2 \sin^2\theta d\theta}$

II Fill in the Blanks

- 11. The solution of the differential equation xy $\frac{dy}{dx} = y + 2$ is _____
- 12. If the air is maintained at 30° C and the temperature of the body cools from 80°C to 60°C in 12 minutes, then the value of K is _____

13. The number of loops for the curve $r = a \cos \theta$

- 14. The area of one loop of the curve $r = a \cos 2\theta$ is _____
- 15. The solution of the differential equation $\frac{dy}{dx} = (x+y)^2$ is _____
- 16. The nature of the differential equation $y \sin 2x dx (y^2 + \cos^2 x) dy = 0$
- 17. The equation of the curve for which the length of sub normal is constant K is_____
- 18. The volume of the solid generated by revolving the curve $r = a(1-\cos \theta)$ about the initial line is _____

19.
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2} - y^{2}}} (a^{2} - x^{2} - y^{2}) dx dy =$$

20. The area cut off by the latus rectum from the parabola $y^2 = 4ax$ is _____

-000-

Co JA	Code No: A109100102 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD I B.Tech. II Mid Examinations, March – 2011 MATHEMATICS – I					
Na	Objective Exam					
na						
An	swer All Questions. All Questions Carry Equal Marks. Time: 20 Min	ı. Marks:	10.			
I.	Choose the correct alternative:					
1.	Radius of curvature at (0,0) of $x^3 + 3x^2y - 4y^3 + y^2 - 6x = 0$ is (a) 6 (b) 2 (c) 3 (d) 0	[]			
2.	The curve $y(x^2 - 1) = x^2 + 1$ is symmetrical about	ſ	1			
	(a) $x - ax$ is (b) $y - ax$ is (c) $y = x$ (d) $y = -x$	-	-			
3.	If for the curve $y\frac{dy}{dx} = 0$ at (2,3) then the x coordinate of center of curvature \overline{x} is]]			
	(a) 0 (b) 1 (c) 3 (d) 2					
4.	The solution of the differential equation $e^{y-x}dy - dx = x^2e^{-x}dx$	[]			
	(a) $e^{x} + e^{y} = c$ (b) $e^{x} = ce^{y}$ (c) $e^{y} - e^{x} = x^{2}$ (d) $e^{y} = e^{x} + \frac{x^{3}}{3} + c$					
5.	The differential equation of orthogonal trajectories of $ay^2 = x^{3}is$ a) y dy = x dx b) 2y dy = 3x dx c) 3y dy = -2x dx d) y dy = -2 x dx	[]			
6.	The asymptote for the curve is $y^2 = x^2 \frac{(a+x)}{x^2}$	[]			
	(a) $x = a$ (b) $x = -a$ (c) $x = 0$ (d) $y = 0$					
7.	The Envelope of the family of curves $y = mx + \sqrt{a^2m^2 + b^2}$ is	[]			
	(a) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (b) $\frac{y^2}{a^2} - \frac{y^2}{b^2}$ (c) $y^2 = yax$ (d) $xy = c^2$					
8.	The surface area of the solid generated by the revolution of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a	bout its min	or axis			
	is	[]			
	a) $4\pi a \int_{0}^{\pi/2} \cos\theta \sqrt{b^2 + a^2 e^2 \sin^2\theta d\theta}$ b) $2\pi a \int_{0}^{\pi/2} \cos\theta \sqrt{b^2 + a^2 e^2 \sin^2\theta d\theta}$					
	c) $4\pi a \int_{0}^{\pi/2} \sin \theta \sqrt{b^2 + a^2 e^2 \sin^2 \theta d\theta}$ d) $2\pi a \int_{0}^{\pi} \sin \theta \sqrt{b^2 + a^2 e^2 \sin^2 \theta d\theta}$					
9.	In Evaluating $\iint xy(x+y)dxdy$ over the region between $y = x^2$ and $y = x$, the lim	its are []			
	(a) $x = 0$ to 1, $xy = 0$ to 1 (b) $x = 0$ to 1, $y = 0$ to x					
	(c) $x = 0$ to 1, $y = 0$ to x^2 (d) $x = 0$ to 1, $y = x^2$ to x					

Cont.....2

10. The equation of the curve for which the length of sub tangent is constant is [a) xy = K b) $y = C e^{\frac{x}{K}}$ c) y = 4ax d) $y = C x e^{\frac{x}{K}}$

II Fill in the Blanks

11. The number of loops for the curve $r = a \cos \theta$

12. The area of one loop of the curve $r = a \cos 2\theta$ is _____

13. The solution of the differential equation $\frac{dy}{dx} = (x + y)^2$ is _____

14. The nature of the differential equation $y \sin 2x dx - (y^2 + \cos^2 x) dy = 0$

- 15. The equation of the curve for which the length of sub normal is constant K is_____
- 16. The volume of the solid generated by revolving the curve $r = a(1-\cos \theta)$ about the initial line is _____
- 17. $\int_{0}^{a} \int_{0}^{\sqrt{a^{2} y^{2}}} (a^{2} x^{2} y^{2}) dx dy =$ _____
- 18. The area cut off by the latus rectum from the parabola $y^2 = 4ax$ is ______
- 19. The solution of the differential equation xy $\frac{dy}{dx} = y + 2$ is _____
- 20. If the air is maintained at 30° C and the temperature of the body cools from 80°C to 60°C in 12 minutes, then the value of K is _____

-000-

Code No: A109100102 Set No. 4 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD I B.Tech. II Mid Examinations, March - 2011 **MATHEMATICS – I Objective Exam** Hall Ticket No. Name: A Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10. I. Choose the correct alternative: If for the curve $y \frac{dy}{dx} = 0$ at (2,3) then the x coordinate of center of curvature \overline{x} is ſ 1 1. (d) 2 (a) 0(b) 1 (c) 3The solution of the differential equation $e^{y-x}dy - dx = x^2e^{-x}dx$ 2. Γ] (b) $e^x = ce^y$ (c) $e^y - e^x = x^2$ (d) $e^y = e^x + \frac{x^3}{2} + c$ (a) $e^x + e^y = c$ The differential equation of orthogonal trajectories of ay $^2 = x^{3}$ is 3.] [c) 3y dy = -2x dx d) y dy = -2 x dxa) y dy = x dx b) 2y dy = 3x dxThe asymptote for the curve is $y^2 = x^2 \frac{(a+x)}{a-x}$ 4.] ſ (b) x = -a (c) x = 0 (d) y = 0(a)x = aThe Envelope of the family of curves $y = mx + \sqrt{a^2m^2 + b^2}$ is 5. [] (a) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (b) $\frac{y^2}{a^2} - \frac{y^2}{b^2}$ (c) $y^2 = yax$ (d) $xy = c^2$ The surface area of the solid generated by the revolution of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about its minor axis 6. is Γ 1 a) $4\pi a \int_{0}^{\pi/2} \cos\theta \sqrt{b^2 + a^2 e^2 \sin^2\theta d\theta}$ b) $2\pi a \int_{0}^{\pi/2} \cos\theta \sqrt{b^2 + a^2 e^2 \sin^2\theta d\theta}$ c) $4\pi a \int_{0}^{\pi/2} \sin \theta \sqrt{b^2 + a^2 e^2 \sin^2 \theta d\theta}$ d) $2\pi a \int_{0}^{\pi} \sin \theta \sqrt{b^2 + a^2 e^2 \sin^2 \theta d\theta}$ In Evaluating $\iint xy(x+y)dxdy$ over the region between $y = x^2$ and y = x, the limits are [7. 1 (b) x = 0 to 1, y = 0 to x (a) x = 0 to 1, xy = 0 to 1 (c) x = 0 to 1, y = 0 to x^2 (d) x = 0 to 1, $y = x^2$ to x The equation of the curve for which the length of sub tangent is 8. constant is Γ] a) xy = K b) $y = C e^{\frac{x}{K}}$ c) y = 4ax d) $y = C x e^{\frac{x}{K}}$

9. Radius of curvature at (0,0) of $x^3 + 3x^2y - 4y^3 + y^2 - 6x = 0$ is [] (a) 6 (b) 2 (c) 3 (d) 0

10. The curve $y(x^2-1) = x^2 + 1$ is symmetrical about (a) x-ax is (b) y-ax is (c) y = x (d) y=-x

II Fill in the Blanks

- 11. The solution of the differential equation $\frac{dy}{dx} = (x + y)^2$ is _____
- 12. The nature of the differential equation $y \sin 2x dx (y^2 + \cos^2 x) dy = 0$
- 13. The equation of the curve for which the length of sub normal is constant K is_____
- 14. The volume of the solid generated by revolving the curve $r = a(1-\cos \theta)$ about the initial line is _____

15.
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2} - y^{2}}} (a^{2} - x^{2} - y^{2}) dx dy =$$

- 16. The area cut off by the latus rectum from the parabola $y^2 = 4ax$ is ______
- 17. The solution of the differential equation xy $\frac{dy}{dx} = y + 2$ is _____
- 18. If the air is maintained at 30° C and the temperature of the body cools from 80°C to 60°C in 12 minutes, then the value of K is _____
- 19. The number of loops for the curve $r = a \cos \theta$
- 20. The area of one loop of the curve $r = a \cos 2\theta$ is _____

-000-

]

:2: