Code: 9ABS105

R9

Max Marks: 70

B.Tech I Year (R09) Supplementary Examinations, November/December 2012 MATHEMATICAL METHODS

(Common to CSE, ECE, EEE, EIE, ECM, E.Con.E, IT and CSS)

Time: 3 hours

Answer any FIVE questions

All questions carry equal marks

1 (a) Reduce the matrix to Echelon form and find its rank

-1	-3	3	-1	
1	1	-1	0	
2	-5	2	-3	
-1	1	0	1)

- (b) Test for consistency and if consistent solve the system, 5x + 3y + 7t = 4; 3x + 26y + 2t = 9; 7x + 2y + 10t = 5.
- 2 (a) Prove that the Eigen values of a Hermitian matrix are all real.
 - (b) Reduce the following quadratic form to canonical form by Lagrange's reduction: $x^2 - 14y^2 + 2z^2 + 4xy + 16yz + 2zx$ and hence find the index, signature and nature of the quadratic form.
- 3 (a) Find a real root of the equation $x = e^{-x}$, using the Newton-Raphson method.
 - (b) Consider the following data for $g(x) = (\sin x) / x^2$

х	0.1	0.2	0.3	0.4	0.5
g(x)	9.9833	4.9696	3.2836	2.4339	1.9177

Calculate g(0.25) accurately using Newton's forward method of interpolation

4 (a) Fit a second degree parabola to the data

X:	0	1	2	3	4
y :	1.0	1.8	1.3	2.5	6.3

(b) Evaluate $\int_{0}^{\pi/2} \sin x \, dx$ by Simpson's $\frac{1}{3}$ rule and compare with the exact value.

Contd. in Page 2

Code: 9ABS105

- 5 (a) Using Euler's method, solve for y at x = 0.1 from $\frac{dy}{dx} = x + y + xy$, y(0) = 1 taking step size h = 0.025.
 - (b) Using the Taylor's series method, solve $\frac{dy}{dx} = xy + y^2$, y(0) = 1 at x = 0.1.
- 6 (a) Express f(x) = x as a Fourier series in the interval $-\pi < x < \pi$.
 - (b) Find the Fourier transform of $f(x) = \begin{cases} 1 x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$. Hence evaluate $\int_0^\infty \frac{x \cos x \sin x}{x^3} \cos \frac{x}{2} dx$.
- 7 Solve completely the equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$, representing the vibrations of a string of Length *l*, fixed at both ends, given that y(0,t) = 0, (l,t) = 0, y(x,0) = f(x) and $\frac{\partial y(x,0)}{\partial t} = g(x), 0 < x < l$.
- 8 (a) Find Z-transform of $\cos h n\theta$ and $\sin h n\theta$. (b) Find $Z^{-1} \begin{pmatrix} z^3 - 20z \\ z^3 - 20z \end{pmatrix}$
 - (b) Find $Z^{-1}\left\{\frac{z^3-20z}{(z-2)^3(z-4)}\right\}$.
