Time: 3 hours

R07

Set No. 2

II B.Tech I Semester Examinations, MAY 2011 CHEMICAL PROCESS CALCULATIONS Chemical Engineering

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) What is solution pressure? Explain.
 - (b) A solution of sodium nitrate in water contains 1 kg of NaNO₃ per 10 kg of water. Calculate the amount of ice formed in cooling 1000 kg of this solution to a temperature of -15^{0} C. Concentration of saturated solution at -15^{0} C is given by 6.2 kmol of NaNO₃ per 1000 kg of water. [4+12]
- 2. A large chamber contains dry N_2 at 27 ^{0}C and 101.3 kPa. water is injected in to the chamber. After saturation of the N_2 with water vapor, the temperature in the chamber is 27 ^{0}C :
 - (a) What is the pressure inside the chamber after saturation?
 - (b) How many moles of H_2O per mole of N_2 are present in the saturated mixture? [8+8]
- 3. Ammonia is made by the reaction between hydrogen and N_2 according to the reaction

 $N_2 + 3H_2 \rightarrow 2 NH_3$

If the reaction is carried out at 50 bar and 600 K, What volumes of nitrogen and H_2 at these conditions are theoretically required for producing 1000 kg of ammonia and what will be the volume of NH_3 produced at the reactor conditions. [16]

- 4. Dry air at 295K and 100 kPa is bubbled through benzene. If the saturated air leaves at 300K and 100 kPa; how many kilograms of benzene are evaporated per 100m³ of entering air. The vapour pressure of benzene (kPa.) is given by: [16] 1nP*= 13.885-^{2788.51}/_{T-52.36}
- 5. Calculate the amount of heat needed to raise the temperature of 1 mol of a gaseous mixture containing 79% N₂ and 21% O₂ by volume from 200 to 1200⁰C. C_p for N₂ = 6.457 + 1.389 × 10⁻³ T - 0.069 × 10⁻⁶ T² C_p for O₂ = 6.117 + 3.167 × 10⁻³ T - 1.005 × 10⁻⁶ T² Here C_p is in Cal/(mol.K) and T is in K. [16]
- 6. (a) A solution has a gravity of 100⁰ Twaddell. Calculate its specific gravity and its gravity in degrees Baume.
 - (b) An oil has a specific gravity at 60° / 60° F of 0.790. Calculate its gravity in degrees API and degrees Baume. [8+8]

 $\mathbf{R07}$

Set No. 2

- 7. Molten sulfur at 140°C is burnt with 30% excess air at 120°C in a sulfur burner producing sulfur dioxide. Calculate the adiabatic reaction temperature using the following data: Standard heat of reaction = -70.96 kcal/mol Mean heat capacities in cal/mol.K : S(l) = 7.4 $SO_2(g) = 12.15$ $O_2(g) = 7.14$ $N_2(g) = 7.51$ Air = 7.00 [16]
- 8. (a) To prepare a solution of 50% sulfuric acid, a dilute waste acid containing 25% H₂SO₄ is combined with a concentrated acid containing 90% H₂SO₄. How many kg of the concentrated acid must be purchased for each 100 kg of dilute waste acid?
 - (b) A mixed acid containing 65% H₂SO₄, 20% HNO₃ and 15% H₂O is to be made by blending the following:
 - i. A spent acid containing 10% HNO₃, 60% H₂SO₄ and 30% H₂O.
 - ii. A concentrated nitric acid containing 92% HNO₃ and 8% H₂O.
 - iii. A concentrated sulfuric acid containing 95% H₂SO₄ and 5% H₂O. All percentages are on weight basis. How many kg of each acid must be used to obtain 1700 kg of the mixed acid? [8+8]

Time: 3 hours

 $\mathbf{R07}$

Set No. $\overline{4}$

II B.Tech I Semester Examinations, MAY 2011 CHEMICAL PROCESS CALCULATIONS **Chemical Engineering**

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- (a) To prepare a solution of 50% sulfuric acid, a dilute waste acid containing 25%1. H_2SO_4 is combined with a concentrated acid containing 90% H_2SO_4 . How many kg of the concentrated acid must be purchased for each 100 kg of dilute waste acid?
 - (b) A mixed acid containing 65% H₂SO₄, 20% HNO₃ and 15% H₂O is to be made by blending the following:
 - i. A spent acid containing 10% HNO₃, 60% H₂SO₄ and 30% H₂O.
 - ii. A concentrated nitric acid containing 92% HNO₃ and 8% H₂O.
 - iii. A concentrated sulfuric acid containing 95% H₂SO₄ and 5% H₂O. All percentages are on weight basis. How many kg of each acid must be used to obtain 1700 kg of the mixed acid? [8+8]
- 2. Molten sulfur at 140° C is burnt with 30% excess air at 120° C in a sulfur burner producing sulfur dioxide. Calculate the adiabatic reaction temperature using the following data:

Standard heat of reaction = -70.96 kcal/mol Mean heat capacities in cal/mol.K : S(1) = 7.4 $SO_2(g) = 12.15$ $O_2(g) = 7.14$ $N_2(g) = 7.51$ Air = 7.00

- 3. Dry air at 295K and 100 kPa is bubbled through benzene. If the saturated air leaves at 300K and 100 kPa; how many kilograms of benzene are evaporated per 100m^3 of entering air. The vapour pressure of benzene (kPa.) is given by: [16] $1nP^* = 13.885 - \frac{2788.51}{T-52.36}$
- 4. (a) A solution has a gravity of 100° Twaddell. Calculate its specific gravity and its gravity in degrees Baume.
 - (b) An oil has a specific gravity at 60° / 60° F of 0.790. Calculate its gravity in degrees API and degrees Baume. [8+8]
- 5. Calculate the amount of heat needed to raise the temperature of 1 mol of a gaseous mixture containing 79% N₂ and 21% O₂ by volume from 200 to 1200° C. C_p for $N_2 = 6.457 + 1.389 \times 10^{-3} \text{ T} - 0.069 \times 10^{-6} \text{ T}^2$ $\dot{C_p}$ for $O_2 = 6.117 + 3.167 \times 10^{-3} \text{ T} - 1.005 \times 10^{-6} \text{ T}^2$ Here C_p is in Cal/(mol.K) and T is in K. [16]

[16]

 $\mathbf{R07}$

Set No. 4

- Code No: 07A30802
 - 6. (a) What is solution pressure? Explain.
 - (b) A solution of sodium nitrate in water contains 1 kg of NaNO₃ per 10 kg of water. Calculate the amount of ice formed in cooling 1000 kg of this solution to a temperature of -15^{0} C. Concentration of saturated solution at -15^{0} C is given by 6.2 kmol of NaNO₃ per 1000 kg of water. [4+12]
 - 7. A large chamber contains dry N_2 at 27 ^{0}C and 101.3 kPa. water is injected in to the chamber. After saturation of the N_2 with water vapor, the temperature in the chamber is 27 ^{0}C :
 - (a) What is the pressure inside the chamber after saturation?
 - (b) How many moles of H_2O per mole of N_2 are present in the saturated mixture? [8+8]
 - 8. Ammonia is made by the reaction between hydrogen and N_2 according to the reaction

 $N_2{+}3H_2 \rightarrow 2~NH_3$

If the reaction is carried out at 50 bar and 600 K, What volumes of nitrogen and H_2 at these conditions are theoretically required for producing 1000 kg of ammonia and what will be the volume of NH_3 produced at the reactor conditions. [16]

Time: 3 hours

 $\mathbf{R07}$

Set No. 1

II B.Tech I Semester Examinations, MAY 2011 CHEMICAL PROCESS CALCULATIONS Chemical Engineering

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. A large chamber contains dry N_2 at 27 ^{0}C and 101.3 kPa. water is injected in to the chamber. After saturation of the N_2 with water vapor, the temperature in the chamber is 27 ^{0}C :
 - (a) What is the pressure inside the chamber after saturation?
 - (b) How many moles of H_2O per mole of N_2 are present in the saturated mixture? [8+8]
- 2. Ammonia is made by the reaction between hydrogen and N_2 according to the reaction

 $N_2 + 3H_2 \rightarrow 2 NH_3$

If the reaction is carried out at 50 bar and 600 K, What volumes of nitrogen and H_2 at these conditions are theoretically required for producing 1000 kg of ammonia and what will be the volume of NH_3 produced at the reactor conditions. [16]

3. Molten sulfur at 140°C is burnt with 30% excess air at 120°C in a sulfur burner producing sulfur dioxide. Calculate the adiabatic reaction temperature using the following data:

Standard heat of reaction = -70.96 kcal/molMean heat capacities in cal/mol.K : S(l) = 7.4 $SO_2(g) = 12.15$ $O_2(g) = 7.14$ $N_2(g) = 7.51$ Air = 7.00 [16]

- 4. Calculate the amount of heat needed to raise the temperature of 1 mol of a gaseous mixture containing 79% N₂ and 21% O₂ by volume from 200 to 1200⁰C. C_p for N₂ = 6.457 + 1.389 × 10⁻³ T - 0.069 × 10⁻⁶ T² C_p for O₂ = 6.117 + 3.167 × 10⁻³ T - 1.005 × 10⁻⁶ T² Here C_p is in Cal/(mol.K) and T is in K. [16]
- 5. (a) To prepare a solution of 50% sulfuric acid, a dilute waste acid containing 25% H₂SO₄ is combined with a concentrated acid containing 90% H₂SO₄. How many kg of the concentrated acid must be purchased for each 100 kg of dilute waste acid?
 - (b) A mixed acid containing 65% H₂SO₄, 20% HNO₃ and 15% H₂O is to be made by blending the following:

 $\mathbf{R07}$

Set No. 1

- i. A spent acid containing 10% HNO₃, 60% H₂SO₄ and 30% H₂O.
- ii. A concentrated nitric acid containing 92% HNO₃ and 8% H₂O.
- iii. A concentrated sulfuric acid containing 95% H₂SO₄ and 5% H₂O. All percentages are on weight basis. How many kg of each acid must be used to obtain 1700 kg of the mixed acid? [8+8]
- 6. (a) What is solution pressure? Explain.
 - (b) A solution of sodium nitrate in water contains 1 kg of NaNO₃ per 10 kg of water. Calculate the amount of ice formed in cooling 1000 kg of this solution to a temperature of -15° C. Concentration of saturated solution at -15° C is given by 6.2 kmol of NaNO₃ per 1000 kg of water. [4+12]
- 7. Dry air at 295K and 100 kPa is bubbled through benzene. If the saturated air leaves at 300K and 100 kPa; how many kilograms of benzene are evaporated per 100m^3 of entering air. The vapour pressure of benzene (kPa.) is given by: |16| $1nP^* = 13.885 - \frac{2788.51}{T-52.36}$

- (a) A solution has a gravity of 100^0 Twaddell. Calculate its specific gravity and 8. its gravity in degrees Baume.
 - (b) An oil has a specific gravity at 60° / 60° F of 0.790. Calculate its gravity in degrees API and degrees Baume. [8+8]

Time: 3 hours

 $\mathbf{R07}$

Set No. 3

II B.Tech I Semester Examinations, MAY 2011 CHEMICAL PROCESS CALCULATIONS Chemical Engineering

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

1. Ammonia is made by the reaction between hydrogen and N_2 according to the reaction

 $N_2 + 3H_2 \rightarrow 2 NH_3$

If the reaction is carried out at 50 bar and 600 K, What volumes of nitrogen and H_2 at these conditions are theoretically required for producing 1000 kg of ammonia and what will be the volume of NH_3 produced at the reactor conditions. [16]

- 2. (a) What is solution pressure? Explain.
 - (b) A solution of sodium nitrate in water contains 1 kg of NaNO₃ per 10 kg of water. Calculate the amount of ice formed in cooling 1000 kg of this solution to a temperature of -15^{0} C. Concentration of saturated solution at -15^{0} C is given by 6.2 kmol of NaNO₃ per 1000 kg of water. [4+12]
- 3. Molten sulfur at 140°C is burnt with 30% excess air at 120°C in a sulfur burner producing sulfur dioxide. Calculate the adiabatic reaction temperature using the following data: Standard heat of reaction = -70.96 kcal/mol Mean heat capacities in cal/mol.K : S(l) = 7.4 $SO_2(g) = 12.15$ $O_2(g) = 7.14$ $N_2(g) = 7.51$ Air = 7.00 [16]
- 4. Calculate the amount of heat needed to raise the temperature of 1 mol of a gaseous mixture containing 79% N₂ and 21% O₂ by volume from 200 to 1200⁰C. C_p for N₂ = 6.457 + 1.389 × 10⁻³ T - 0.069 × 10⁻⁶ T² C_p for O₂ = 6.117 + 3.167 × 10⁻³ T - 1.005 × 10⁻⁶ T² Here C_p is in Cal/(mol.K) and T is in K. [16]
- 5. (a) A solution has a gravity of 100⁰ Twaddell. Calculate its specific gravity and its gravity in degrees Baume.
 - (b) An oil has a specific gravity at 60° / 60° F of 0.790. Calculate its gravity in degrees API and degrees Baume. [8+8]
- 6. Dry air at 295K and 100 kPa is bubbled through benzene. If the saturated air leaves at 300K and 100 kPa; how many kilograms of benzene are evaporated per 100m³ of entering air. The vapour pressure of benzene (kPa.) is given by: [16]

 $|\mathbf{R07}|$

Set No. 3

 $1nP^* = 13.885 - \frac{2788.51}{T-52.36}$

- 7. (a) To prepare a solution of 50% sulfuric acid, a dilute waste acid containing 25% H_2SO_4 is combined with a concentrated acid containing 90% H_2SO_4 . How many kg of the concentrated acid must be purchased for each 100 kg of dilute waste acid?
 - (b) A mixed acid containing 65% H_2SO_4 , 20% HNO_3 and 15% H_2O is to be made by blending the following:
 - i. A spent acid containing 10% HNO₃, 60% H₂SO₄ and 30% H₂O.
 - ii. A concentrated nitric acid containing 92% HNO₃ and 8% H₂O.
 - iii. A concentrated sulfuric acid containing 95% H₂SO₄ and 5% H₂O. All percentages are on weight basis. How many kg of each acid must be used to obtain 1700 kg of the mixed acid? [8+8]
- 8. A large chamber contains dry N_2 at 27 ^{0}C and 101.3 kPa. water is injected in to the chamber. After saturation of the N_2 with water vapor, the temperature in the chamber is 27 ^{0}C :
 - (a) What is the pressure inside the chamber after saturation?
 - (b) How many moles of H_2O per mole of N_2 are present in the saturated mixture? [8+8]
