$\mathbf{R07}$ 

### Set No. 2

#### II B.Tech I Semester Examinations, MAY 2011 METALLURGICAL THERMODYNAMICS AND KINETICS Metallurgy And Material Technology

#### Time: 3 hours

Max Marks: 80

[8+8]

#### Answer any FIVE Questions All Questions carry equal marks \*\*\*\*

- 1. (a) Explain carburizing and decarburizing process with special reference to diffusion. Give their concentration profile?
  - (b) Assume that the surface concentration to be constant having 1-2% carbon, calculate the time required to carburize a steel component having original composition of 0.4% carbon to 0.9% carbon at a depth of 0.15mm at 1000  $^{0}$ C? [8+8]
- 2. (a) The vapour pressure of liquid iron is given by the equation  $\log P_{Fe} = \frac{-19,710}{T} 1.27 \log T + 13.27.$ Calculate the standard heat of vaporization at 1600 <sup>o</sup>C.
  - (b) Distinguish between:
    - i. Invariant
    - ii. Bivariant
    - iii. Monovariant
    - iv. Trivariant systems with examples.
- 3. (a) What is a heat engine cycle? Explain.
  - (b) Explain a heat engine cycle performed by a closed system.
  - (c) Calculate the entropy change  $\Delta S^0$  which takes place when 1 gm of liquid water and 1 gm of liquid water at 100<sup>0</sup> C are mixed. A constant heat capacity of 1 cal/gm 0<sup>0</sup>C may be assumed for water from 0<sup>0</sup> to 100 <sup>o</sup>C. [4+6+6]
- 4. (a) What are the necessary conditions required for spontaneous and feasible reactions in terms of free energies? Explain.
  - (b) Using Maxwell relation show that TdS = Cv.dT + P.dV. [8+8]
- 5. (a) The reversible e.m.f between pure Mg and Mg-Zn alloy containing 63.5 atom 10Mg in a fused KCl-LiCl-MgCl<sub>2</sub> electrolyte may be represented by  $E = 16.08 \times 10^{-3} + 1.02 \times 10^{-5}$ T, where E and T are in V and K respectively. Calculate the activity coefficient and excess partial molar free energy of mixing Mg in the above alloy at 727 <sup>o</sup>C?
  - (b) Differentiate between partial molal free energy and standard free energy?[8+8]
- 6. Explain about the effect of concentration on the reaction rate:
  - (a) First order reaction
  - (b) Second order reaction

 $\mathbf{R07}$ 

# Set No. 2

(c) Third order or higher order reaction.

- 7. (a) Explain how the slope of the line and entropy change can be calculated from Ellingham diagrams?
  - (b) Explain the range of stability of the metallic oxide can be determined from Ellingham diagrams?
  - (c) Explain about the possibilities of the oxide and sulphide reactions occur in Extraction processes? [6+5+5]
- 8. (a) Explain mechanical, thermal and chemical irreversibilities with examples.
  - (b) What are the basic equations of state for one mole of ideal and real gas? Explain.  $[9{+}7]$



<sup>[5+5+6]</sup> 

 $\mathbf{R07}$ 

### Set No. 4

#### II B.Tech I Semester Examinations, MAY 2011 METALLURGICAL THERMODYNAMICS AND KINETICS Metallurgy And Material Technology

#### Time: 3 hours

Max Marks: 80

#### Answer any FIVE Questions All Questions carry equal marks \*\*\*\*

- 1. (a) Explain mechanical, thermal and chemical irreversibilities with examples.
  - (b) What are the basic equations of state for one mole of ideal and real gas? Explain. [9+7]
- 2. (a) Explain how the slope of the line and entropy change can be calculated from Ellingham diagrams?
  - (b) Explain the range of stability of the metallic oxide can be determined from Ellingham diagrams?
  - (c) Explain about the possibilities of the oxide and sulphide reactions occur in Extraction processes? [6+5+5]
- 3. (a) The vapour pressure of liquid iron is given by the equation  $\log P_{Fe} = \frac{-19,710}{T} 1.27 \log T + 13.27.$ Calculate the standard heat of vaporization at 1600 <sup>o</sup>C.
  - (b) Distinguish between:
    - i. Invariant
    - ii. Bivariant
    - iii. Monovariant
    - iv. Trivariant systems with examples. [8+8]
- 4. (a) What are the necessary conditions required for spontaneous and feasible reactions in terms of free energies? Explain.
  - (b) Using Maxwell relation show that TdS = Cv.dT + P.dV. [8+8]
- 5. (a) What is a heat engine cycle? Explain.
  - (b) Explain a heat engine cycle performed by a closed system.
  - (c) Calculate the entropy change  $\Delta S^0$  which takes place when 1 gm of liquid water and 1 gm of liquid water at 100<sup>0</sup> C are mixed. A constant heat capacity of 1 cal/gm 0<sup>0</sup>C may be assumed for water from 0<sup>0</sup> to 100 <sup>o</sup>C. [4+6+6]
- 6. Explain about the effect of concentration on the reaction rate:
  - (a) First order reaction
  - (b) Second order reaction
  - (c) Third order or higher order reaction. [5+5+6]

 $\mathbf{R07}$ 

## Set No. 4

- 7. (a) The reversible e.m.f between pure Mg and Mg-Zn alloy containing 63.5 atom 10Mg in a fused KCl-LiCl-MgCl<sub>2</sub> electrolyte may be represented by E = 16.08×10<sup>-3</sup> + 1.02×10<sup>-5</sup>T, where E and T are in V and K respectively. Calculate the activity coefficient and excess partial molar free energy of mixing Mg in the above alloy at 727 <sup>o</sup>C?
  - (b) Differentiate between partial molal free energy and standard free energy?[8+8]
- 8. (a) Explain carburizing and decarburizing process with special reference to diffusion. Give their concentration profile?
  - (b) Assume that the surface concentration to be constant having 1-2% carbon, calculate the time required to carburize a steel component having original composition of 0.4% carbon to 0.9% carbon at a depth of 0.15mm at 1000  $^{0}$ C? [8+8]

\*\*\*\*

 $\mathbf{R07}$ 

### Set No. 1

#### II B.Tech I Semester Examinations, MAY 2011 METALLURGICAL THERMODYNAMICS AND KINETICS Metallurgy And Material Technology

#### Time: 3 hours

Max Marks: 80

#### Answer any FIVE Questions All Questions carry equal marks \*\*\*\*\*

- 1. (a) The vapour pressure of liquid iron is given by the equation  $\log P_{Fe} = \frac{-19,710}{T} 1.27 \log T + 13.27.$ Calculate the standard heat of vaporization at 1600 <sup>o</sup>C.
  - (b) Distinguish between:
    - i. Invariant
    - ii. Bivariant
    - iii. Monovariant
    - iv. Trivariant systems with examples. [8+8]
- 2. (a) What are the necessary conditions required for spontaneous and feasible reactions in terms of free energies? Explain.
  - (b) Using Maxwell relation show that TdS = Cv.dT + P.dV. [8+8]
- 3. (a) Explain carburizing and decarburizing process with special reference to diffusion. Give their concentration profile?
  - (b) Assume that the surface concentration to be constant having 1-2% carbon, calculate the time required to carburize a steel component having original composition of 0.4% carbon to 0.9% carbon at a depth of 0.15mm at 1000  $^{0}$ C? [8+8]
- 4. (a) What is a heat engine cycle? Explain.
  - (b) Explain a heat engine cycle performed by a closed system.
  - (c) Calculate the entropy change  $\Delta S^0$  which takes place when 1 gm of liquid water and 1 gm of liquid water at 100<sup>°</sup> C are mixed. A constant heat capacity of 1 cal/gm 0<sup>°</sup>C may be assumed for water from 0<sup>°</sup> to 100 <sup>°</sup>C. [4+6+6]
- 5. (a) Explain how the slope of the line and entropy change can be calculated from Ellingham diagrams?
  - (b) Explain the range of stability of the metallic oxide can be determined from Ellingham diagrams?
  - (c) Explain about the possibilities of the oxide and sulphide reactions occur in Extraction processes? [6+5+5]
- 6. Explain about the effect of concentration on the reaction rate:
  - (a) First order reaction

### $\mathbf{R07}$

# Set No. 1

- (b) Second order reaction
- (c) Third order or higher order reaction.

#### [5+5+6]

- 7. (a) Explain mechanical, thermal and chemical irreversibilities with examples.
  - (b) What are the basic equations of state for one mole of ideal and real gas? Explain. [9+7]
- 8. (a) The reversible e.m.f between pure Mg and Mg-Zn alloy containing 63.5 atom 10Mg in a fused KCl-LiCl-MgCl<sub>2</sub> electrolyte may be represented by  $E = 16.08 \times 10^{-3} + 1.02 \times 10^{-5}$ T, where E and T are in V and K respectively. Calculate the activity coefficient and excess partial molar free energy of mixing Mg in the above alloy at 727 <sup>o</sup>C?
  - (b) Differentiate between partial molal free energy and standard free energy?[8+8]

\*\*\*\*

 $\mathbf{R07}$ 

## Set No. 3

#### II B.Tech I Semester Examinations, MAY 2011 METALLURGICAL THERMODYNAMICS AND KINETICS Metallurgy And Material Technology

#### Time: 3 hours

Max Marks: 80

#### Answer any FIVE Questions All Questions carry equal marks \*\*\*\*\*

- (a) The reversible e.m.f between pure Mg and Mg-Zn alloy containing 63.5 atom 10Mg in a fused KCl-LiCl-MgCl<sub>2</sub> electrolyte may be represented by E = 16.08×10<sup>-3</sup> + 1.02×10<sup>-5</sup>T, where E and T are in V and K respectively. Calculate the activity coefficient and excess partial molar free energy of mixing Mg in the above alloy at 727 <sup>o</sup>C?
  - (b) Differentiate between partial molal free energy and standard free energy?[8+8]
- 2. (a) What is a heat engine cycle? Explain.
  - (b) Explain a heat engine cycle performed by a closed system.
  - (c) Calculate the entropy change  $\Delta S^0$  which takes place when 1 gm of liquid water and 1 gm of liquid water at 100<sup>0</sup> C are mixed. A constant heat capacity of 1 cal/gm 0<sup>0</sup>C may be assumed for water from 0<sup>0</sup> to 100 <sup>o</sup>C. [4+6+6]
- 3. (a) The vapour pressure of liquid iron is given by the equation  $\log P_{Fe} = \frac{-19,710}{T} 1.27 \log T + 13.27.$ Calculate the standard heat of vaporization at 1600 <sup>o</sup>C.
  - (b) Distinguish between:
    - i. Invariant
    - ii. Bivariant
    - iii. Monovariant
    - iv. Trivariant systems with examples. [8+8]
- 4. (a) Explain mechanical, thermal and chemical irreversibilities with examples.
  - (b) What are the basic equations of state for one mole of ideal and real gas? Explain. [9+7]
- 5. (a) What are the necessary conditions required for spontaneous and feasible reactions in terms of free energies? Explain.
  - (b) Using Maxwell relation show that TdS = Cv.dT + P.dV. [8+8]
- 6. Explain about the effect of concentration on the reaction rate:
  - (a) First order reaction
  - (b) Second order reaction
  - (c) Third order or higher order reaction. [5+5+6]

### $\mathbf{R07}$

# Set No. 3

#### Code No: 07A30602

- 7. (a) Explain carburizing and decarburizing process with special reference to diffusion. Give their concentration profile?
  - (b) Assume that the surface concentration to be constant having 1-2% carbon, calculate the time required to carburize a steel component having original composition of 0.4% carbon to 0.9% carbon at a depth of 0.15mm at 1000  $^{0}$ C? [8+8]
- 8. (a) Explain how the slope of the line and entropy change can be calculated from Ellingham diagrams?
  - (b) Explain the range of stability of the metallic oxide can be determined from Ellingham diagrams?
  - (c) Explain about the possibilities of the oxide and sulphide reactions occur in Extraction processes? [6+5+5]

\*\*\*\*