Code No: C1506

Max.Marks:60

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.TECH I SEMESTER EXAMINATIONS APRIL/MAY- 2012 TRIBOLOGY (MACHINE DESIGN)

Time: 3hours

Answer any five questions All questions carry equal marks

- 1. With the help of a neat sketch explain the construction and working of a capillary viscometer.
- 2. A pump capable of maintaining 18Mpa pressure is supplying oil of viscosity 70centipoise to a circular hydrostatic bearing of an outside diameter of 0.1m at a rate of $0.4 \times 10^5 \text{m}^3/\text{s}$, generating a steady film thickness of 35micrometers. The bearing supports a weight of 60KN, and rotates at 1000rpm. Calculate a suitable recess radius and pumping power. Also calculate the percentage in load increase that would cause a 16% decrease in film thickness.
- 3. A plane slider bearing with fixed shoe is operating under the following conditions.

i) Width of bearing, B	= 45mm
ii) Length to weight ratio, L/B	=1
iii) Sliding velocity	=4m/s
iv) Minimum film thickness	=0.03mm
v) Absolute viscosity of lubricant	=0.02Pa s
vi) Attitude	=2.0

Neglecting side leakage, find load carrying capacity and coefficient of friction.

- 4. A steel ball starts rolling from rest down a steel plate inclined at 45° to the horizontal. The plate is covered by a thin oil film of viscosity $\eta = 50$ cP and pressure viscosity coefficient $\alpha = 2.2 \times 10^{-8} \text{ m}^2/\text{N}$. The diameter of the ball is $d = 3 \times 10^{-2} \text{m}$, Young's modulus is $E = 2.1 \times 10^{11} \text{Pa}$, Poisson's ratio is $\upsilon = 0.3$ and density $\rho = 7800 \text{ kg/m}^3$. What is the minimum thickness of the elasto hydrodynamic film after the ball has rolled 1 cm and 1m? Assume no sliding.
- 5.a) Can a mild steel or equivalent material be used in EHL contacts? Discuss.
- b) Discuss the influence of stress and deformation on elastohydrodynamic lubrication.
- 6. Derive an average equation for load carying capacity of a partially lubricated surface.
- 7.a) Abrasive wear has been described as 'wear by a series of miniature cutting tools'. Is this an oversimplification, and, if so, indicate why?
 - b) Discuss the effect of sliding speed on friction.
- 8. Write short note on the following
 - a) Surface contaminants
 - b) Deep groove radial bearings
 - c) Hydrodynamic instability.