Register				
Number		a 1	111	

MATHEMATICS — Paper II

Time Allowed : $2\frac{1}{2}$ Hours] [Maximum Marks : 100

Instruction: Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.

PART - I

This Part contains two Sections, Section - A and Section - B. Note: i)

- Section A contains Multiple Choice Questions. Answer all the ii) twenty Questions. Each question carries one mark.
- Section B contains 15 questions. Answer any ten questions. Each iii) question carries two marks.

5. Chords AB and CD intersect at P inside a

SECTION - A

Choose the correct answer from the given alternatives:

 $20 \times 1 = 20$

1. If
$$x + \begin{bmatrix} 7 & 8 & -1 \\ 4 & 3 & -2 \end{bmatrix} = \begin{bmatrix} 9 & 10 & 1 \\ -4 & -3 & 2 \end{bmatrix}$$
, then $x = \begin{bmatrix} 1 & 1 & 1 \\ -4 & -3 & 2 \end{bmatrix}$

1)
$$\begin{bmatrix} 16 & 18 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 2) $\begin{bmatrix} 2 & 2 & 2 \\ 8 & 6 & 4 \end{bmatrix}$
3) $\begin{bmatrix} 2 & 2 & 2 \\ -8 & -6 & -4 \end{bmatrix}$ 4) $\begin{bmatrix} 2 & 2 & 2 \\ -8 & -6 & 4 \end{bmatrix}$.

$$\begin{array}{c|cccc}
2 & 2 & 2 \\
8 & 6 & 4
\end{array}$$

$$3) \quad \begin{bmatrix} 2 & 2 & 2 \\ -8 & -6 & -4 \end{bmatrix}$$

$$\begin{pmatrix}
2 & 2 & 2 \\
-8 & -6 & 4
\end{pmatrix}$$

In triangle ABC, AD is the bisector of and The order of the matrix [0 4 8] is 2.

1) 1,5

- 3)
- II 10qaq 2014) Alv 13-5. TAM

4. In a right triangle PQR, the perpendicular QT on the hypotenuse PR is drawn. Then PR.PT =

- 1)
- PR^2 PT² PT²
- does 3) QT^2 and the content A and the PQ^2 . A = not took .

Chords AB and CD intersect at P inside a circle. If AP = 4 cm, PB = 6 cm, 5.

1)

2) 8

3) 7 11! 01 0 1 1 8

If the ratio of altitudes of two similar triangles is 4:5, then ratio of their areas is 6.

1:2 1)

16:25 2)

4:5 3)

4) 5:4.

In triangle ABC, AD is the bisector of angle A. If AB = 6 cm, AC = 8 cm, 7. BD = 4.5 cm then $DC = \dots$ cm.

5 1)

7.5 2)

6 3)

4) 8.

8.					s the midpoint. Semicircles are drawn same side of AB. A circle is drawn to			
		ch all the semicircles. The radi						
	1)	6		2)	3			
	3)	2		4)	1.			
9.	The	angle of inclination with X-ax	is of	the lir	ne whose slope is $\sqrt{3}$ is			
	1)	30° al ashbel ed lo dige		2)	45° wedl mod m 8.9 at rebbal			
	3)	60°		4)	90°.			
10.	The	equation of the line passi	ng t	hroug	gh origin and parallel to the line			
	3x +	2y - 5 = 0 is						
	1) to	3x - 2y - 5 = 0		2)	2x - 3y = 0			
	1)	0x 2g 0 = 0						
	3)	3x + 2y = 0	,	4)	-3x + 2y - 5 = 0.			
11.	1. If A (5, 5), B (-5, 1), C (10, 7) are collinear points, the area of triangle ABC is							
	1)	$\frac{13}{2}$		2)	18. The simplified value of sec A el			
	3)	25		4)	0.			
12.	The	midpoint of AB is the origin. I	f A is	(3, –	2), then B is			
	1)	(3.0) $\frac{1}{2} = (4.9)$ H		2)	(0, -2) was the base A .81			
	3)	(-3, 2)		4)	(-2,-3).			
13.	The	point of intersection of $3x - y$	= 2 a	nd x	+ y = 6 is			
	1)	(4,4)		2)	(4, 10)			
	3)	(10, 4)		4)	(2, 4).			
14.	If co	s $2A = \sin 48$, then the possib	le va	lue of	A is			
	1)	24°		2)	42°			
	3)	21°		4)	12°.			

1) 17

3) 13

. Torra over .

8120				4					
15.	The	value of $\frac{2 \text{ ta}}{1 + \text{ ta}}$	$\frac{\ln 30^{\circ}}{\ln^2 30^{\circ}}$ is	M bm to no	s em a er, all				
	1)	$\frac{1}{2}$				-			
	3)	$\frac{\sqrt{3}}{2}$		(2)	4)	1.			
16.	The	angle of eleva	tion of a ladder	leani	ng ag	ainst a wa	all is 60° ar	nd the foot	of the
	ladd	er is 9.5 m fro	om the wall. The	en the	elengt	h of the la	adder is	m.	
	1)	10	***00		2)	19		iae, ka	
	3)	29 Harring 3	oni nigro ngi	iorrii	4)	9.5.		deugo PAT	
17.	If ta	$n 2\theta = \cot (\theta)$	+ 6°) where 20	and θ	are a	cute angle	es, then the	e value of θ	is
	1)	36°			2)	26°			
	3)		ear points, the			6°,			
18.	The	simplified val	ue of sec $A \sqrt{1}$	- sin ²	A is				
	1)	- 1			2)	2			
	3)	- 2				*			
19.	A	and B are	mutually exc	lusive	e eve	nts. If	$P(A) = \frac{1}{2}$	$P(B) = \frac{1}{3}$	ther
	P(A	$(\cap B)$ is							
	1)	16				$\frac{5}{6}$	integracia	to taken of	
	3)	0			4)	∞.			
20.	The	variance is 2	89 and its S.D.	is	to the	· Booker()	redication		

2)

18

21.

SECTION - B

Answer any ten questions:

 $10 \times 2 = 20$

21. Find the unknowns a, b, c, d in the following matrix equation:

$$\begin{bmatrix} d+1 & 10+a \\ 3b-2 & c-4 \end{bmatrix} = \begin{bmatrix} 2 & 2a+1 \\ b-4 & 4c \end{bmatrix}$$

- 22. Solve: $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}.$
- 23. ABT is a secant of a circle which intersects the circle at A and B, and PT is a tangent to circle at P. If PT = 5 cm, BT = 2.5 cm, find AB.
- 24. The incircle touches triangle ABC at D, E, F. If BD = 4 cm, CE = 8 cm, AF = 3 cm, find the perimeter of the triangle.
- 25. In the given figure, AD is the angle bisector of $\angle BAC$. Find x if AB = 12 cm, BD = 3 cm and DC = 7 cm where x is equal to AC.

- 26. Show that the points (-2, -1)(1, 0), (4, 3) and (1, 2) are the vertices of a parallelogram.
- 27. Show that the points A(4, 1), B(-2, -3) and C(-5, -5) are collinear.
- 28. Find the equation of the line cutting of intercepts $\frac{-4}{3}$ and $\frac{3}{4}$ on the x and y-axes respectively.
- 29. A straight line passes through (1, 2) and has the equation y = 2x + k. Find k.
- 30. Prove that $\frac{\tan^2 \theta}{\sec \theta + 1} = \sec \theta 1$.

- 31. Prove that $\cos^4 \theta \cos^2 \theta = \sin^4 \theta \sin^2 \theta$.
- 32. The angle of depression of a stone on the ground from the top of building is 40°. If the stone is at a distance 40 m away from the building, find the height of the building.
- 33. Evaluate tan² 30°+tan² 45°+tan² 60°.
- 34. Find the S.D. of the first five natural numbers.
- 35. Three coins are tossed together. Find the probability that exactly two heads turn up.

PART - II Disassi on lo estembre od bed

The facircle touches triangle ABC at D. E. F. W 8D = 4 cm. CE = 8 cm. AF = 3 cm.

- Note: i) This part contains four Sections, Section-C, Section-D, Section-E and Section-F
 - ii) Section C and Section-E contain three questions each. Answer any two questions in each section.
 - iii) **Section D** and **Section-F** contain *four* questions each. Answer any *three* questions in each section.
 - iv) Each question carries five marks.

SECTION - C

Answer any two questions:

 $2 \times 5 = 10$

- 36. State and prove Thales Theorem.
- 37. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding angle bisectors.
- 38. PQR is a triangle in which PQ = PR and Z is a point on the side PR such that $QR^2 = PR.RZ$. Prove that QZ = QR.

SECTION - D

Answer any three questions:

$$3 \times 5 = 15$$

39. If
$$A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2$, find a and b .

40. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
, show that $A^2 - 5A + 7I_2 = 0$.

- 41. A two digit number is formed of the digits 2, 5 and 9. Find the probability that it is divisible by 2 or 5. (Repetition of digits is not allowed).
- 42. Find the variance of the following:

C.I.	20 - 30	30 – 40	40 – 50	50 - 60	
f	8	6	5	4	

SECTION - E

Answer any two questions:

$$2 \times 5 = 10$$

43. Prove that

$$\frac{\cos\theta}{1-\tan\theta} + \frac{\sin\theta}{1-\cot\theta} = \cos\theta + \sin\theta.$$

- 44. In a right triangle ABC, $\angle C = 90^{\circ}$, $\angle A = 30^{\circ}$ and AB = 8 cm. Find $\angle B$ and the sides BC and AC.
 - 45. The angle of elevation of a tower at a point is 45°. After going 20 m towards the foot of the tower the angle of elevation of the tower becomes 60°. Calculate the height of the tower.

SECTION - F

Answer any three questions:

 $3 \times 5 = 15$

- 46. The vertices of a triangle are A (1, 8), B (-2, 4), C (8, -5). M, N are the midpoints of AB and AC. Show that $MN \mid BC$ and $MN = \frac{1}{2}BC$.
- 47. Find the equation of the straight line joining the point of intersection of 3x y + 9 = 0 and 2y + x 4 = 0 to the point of intersection of 2x + y = 4 and 2y = x + 3.
- 48. Show that the points (4, 8), (-4, 0), (-3, 1), (-7, -3) are collinear.
- 49. The line joining (-4, 6) and (-1, -3) is perpendicular to the line joining (0, -4) and (3, a). Find a.

PART - III

Note: i) This part contains Section-G.

- ii) Answer any one question.
- iii) The question carries ten marks.

SECTION - G

Answer any one question:

 $1 \times 10 = 10$

- 50. Construct a triangle ABC in which BC = 7.5 cm, $\angle A = 55^{\circ}$, and the median through A is of length 5.5 cm. Also find the length of the altitude drawn from the vertex A on BC.
- 51. Draw a circle of radius 3.6 cm. Take a point P on it. Without using the centre of circle draw a tangent to circle at point P.