<u>CET – CHEMISTRY – 2012</u>							
VERSION CODE: A – 2							
1.	The ore that is conce	entrated by the Froth flo	atation process is				
	a) Chalcopyrites	b) Cryolite	c) Cuprite	d) Calamine			
Ans:	(a)						
2.	The equivalent mass chloride is	s of a certain bivalent me	etal is 20. The molecula	r mass of its anhydrous			
	a) 91	b) 111	c) 55.5	d) 75.5			
Ans:	(b)						
3.	2 moles of N_2O_4 (g) is heated to 596 K whe	s kept in a closed contain en 20% by mass of N_2O_4	ner at 298 K and under $_{(g)}$ decomposes to NO ₂ .	1 atm pressure. It is The resulting pressure is			
	a) 2.4 atm	b) 1.2 atm	c) 4.8 atm	d) 2.8 atm			
Ans:	(a)						
4.	Sucrose is NOT a red	ducing sugar since					
	a) it is chemically st	able					
	b) it contains no free	e aldenydes or keto grou	ip adjacent to a CHOH g	Iroup			
	c) it is pullt up of a i						
Anci	(h)	/e					
AIIS.	(D) Which one of the fol	lowing contains ionic co	valent and co ordinate l	honds?			
5.		h) NaCl		d) NaNC			
Δns·	(d)						
6	Dialysis can be used	to separate					
0.	a) glucose and fruct	ose	b) protein and starch				
	c) glucose and prote	ein	d) glucose and NaCl				
Ans:	(c)		, 3				
7.	The percentage of p respectively	-character of the hybrid	orbitals in graphite and	diamond are			
	a) 33 and 25	b) 50 and 75	c) 67 and 75	d) 33 and 75			
Ans:	(c)						
8.	A gas expands from 10 ⁵ Nm ⁻² .	a volume of 1m ³ to a vo	plume of 2 m ³ against ar	n external pressure of			
	The work done by th	ne gas will be					
_	a) 10° kJ	b) 10 ² kJ	c) 10 ² kJ	d) 10 [°] kJ			
Ans:	(b)						
9.	The mass of a non-volatile solute of molar mass 40 g mol ⁻¹ that should be dissolved in 114 g of octane to lower its vapour pressure by 20% is						
_	a) 10 g	b) 11.4 g	c) 9.8 g	d) 12.8 g			
Ans:	(a)						
10.	During the adsorptio	on of a gas on the surfac	e of a solid, which of the	e following is true?			
	a) $\Delta G < O$, $\Delta H > O$, $\Delta S < O$ b) $\Delta G > O$, $\Delta H < O$, $\Delta S < O$						
Λ	$C_{J} \Delta G < U, \Delta H $	∆5 < U	$UJ \Delta G < U, \Delta H < U, \Delta S$	5 > U			
ANS:	(C) The approvimate tim	o duration in hours to a	loctroplate 20 a of color	um from molton coloium			
11.	chlriode using a curr	ent of 5 amp is	aectiopiate so g of calci	um nom monen calcium			
	[At. Mass of $Ca = 40$)]					
	a) 8	b) 80	c) 10	d) 16			
Ans:	(a)						

12.	The pH of the solution of $pH = 4$	tion obtained by mixing 1 is	00 ml of a solution of pl	H = 3 with 400 ml of a			
	a) 3 – log 2.8	b) 7 – log 2.8	c) 4 – log 2.8	d) 5 – log 2.8			
Ans:	(c)						
13.	The equilibrium constant of the reaction:						
	$A_{(s)} + 2B^+_{(aq)} \rightleftharpoons A$	$(aq)^{2+} + 2B_{(s)} \cdot E_{cell}^{0} = 0.0295$	5 V is				
	$\left[\frac{2.303\text{RT}}{\text{F}} = 0.059\right]$						
	a) 10	b) 2 x 10 ²	c) 3 x 10 ²	d) 2 x 10 ⁵			
Ans:	(a)						
14.	An oxygen containing organic compound was found to contain 52% carbon and 13% of hydrogen. Its vapour density is 23. The compound reacts with sodium metal to liberate hydrogen. A functional isomer of this compound is						
	a) Ethanol	b) Ethanal	c) Methoxy Metane	d) Methoxy Ethane			
Ans:	(c)						
15.	Which one of the f	ollowing is NOT true regar	rding electromeric effect	?			
	a) It results in the	appearance of partial cha	irges on the carbon ator	ns			
	b) It is a temporar	y effect					
	c) It operates on n	nultiple bonds					
A	d) It requires an a	ttacking reagent					
	(a)	allowing is NOT formed wi	han a mixtura of mathul	bromido and			
10.	bromobenzene is h	neated with sodium metal	in the presence of dry E	ther?			
	a) Ethane	b) Diphenyl	c) Propane	d) Toluene			
Ans:	(c)						
17.	Power alcohol is a mixture of						
	a) 80% Petrol + 20% Benzene + Small quantity of Ethanol						
	b) 80% Petrol + 2	0% Ethanol + Small quan	tity of Benzene				
	c) 80% Ethanol +	20% Benzene + Small qu	antity of Petrol				
	d) 50% Petrol + 5	0% Ethanol + Small quan	tity of Benzene				
Ans:	(b)						
18.	Identify 'C' in the f	ollowing					
	\frown	Anhy AICI	O ₂ dil. H _a SO.				
		$H_3 - CH - CH_3 \longrightarrow A$	$ \xrightarrow{2} B \xrightarrow{100 \text{ so}} $	Phenol + C			
		-HCI	130 °C 100 °C				
		CI					
	a) Water		b) Ethanol				
	c) Propanone		d) Cumene hydroperox	kide			
Ans:	(c)						
19.	20 ml of methane is completely burnt using 50 ml of oxygen. The volume of the gas left						
	after cooling to roo	om temperature is					
	a) 80 ml	b) 40 ml	c) 60 ml	d) 30 ml			
Ans:	(d)						
20.	100 ml of 0.1 M acetic acid is completely neutralized using a standard solution of NaOH.						
	solution is	ane optained at STP after	the complete electrolys	is of the resulting			
	a) 112 ml	b) 56 ml	c) 224 ml	d) 560 ml			
Ans:	(a)		,	<i>,</i>			

21.	Saccharin, an artificial sweetner, is manufactured from a) Cellulose b) Toluene c) Cyclohexane d) Starch							
Ans								
22.	W	,, hich of the f	following	is NOT TR	UE for S _N ¹ I	reaction?		
	a)	Favoured	by polar s	solvents	iv			
	b)	3° – alkyl h	nalides ge	enerally rea	act through	S _N ¹ reactio	n	
	c)	The rate of	reaction	does not o	depend upc	on the molar	r concentratio	on of the nucleophile
_	d)	1° – alkyl r	nalides ge	enerally rea	act through	S _N ¹ reactio	n	
Ans:	(d	l)						
23.	0I	of winter g	reen is م) a carboy	whice acid	c) an alco	hol	d) a katana
Δns·	a) (a				ylic aciu			u) a ketone
24.	Ar te	n organic co st and posit	mpound ive for Bo	'A' burns w prsche's re	vith a sooty agent test.	flame. It is The compo	s negative to ound 'A' is	wards Tollen's reagent
	a)	Benzaldehy	/de b) Acetophe	enone	c) Acetone	Э	d) Salicylic acid
Ans:	(b)						
25.	Fo	r a reaction	: A + B	\rightarrow Product	s, the rate	of the react	ion at variou	s concentrations given
	DE	NOM :						
		Evet No	ГЛЛ	[D]	Data (m	ol dm ⁻³ c ⁻]	
				[D]	Kate (III	¹)		
		1	0.2	0.2		2		
		2	0.2	0.4		4		
		3	0.2	0.4	3	36		
							-	
	Th	ne rate law f	for the ab	ove reacti	on is		_	
	a)	$r = K[A]^2[E$	3] b	r = K[A]][B] ²	c) r = K[A	λ] ³ [B]	d) $r = K[A]^2[B]^2$
Ans:	(a) 			0			
26.	VV	nich one of	the follov	ving nas N	O unpaired	electrons?		N
	a)	02	b	O_2		c) 0 ₂		d) 0 ₂
Ans:	(d	I)						
27.	ır م	ie atomic nu	amber of	cobalt is 2	7. The EAN	l of cobalt ir		2) ₄ Cl ₂] IS
Δns·	a) (c	30 N	U) 24		C) 30		u) 34
28.	The "spin only" magnetic moment of Ni ²⁺ in aqueous solution would be							
_0.	[At. No. of Ni = 28]							
	- a)	√6 BM	E	B) √15 BM		c) √2 BM		d) √8 BM
Ans:	(d	I)		-				
29.	In	npossible or	bital amo	ong the foll	owing is			
	a)	2s	b)3f		c) 2p		d) 4 d
Ans:	(b)						
30.	Th	ne total num	ber of el	ectrons in	18 ml of wa	ater (densit	y = 1 g ml⁻¹)	is
_	a)	6.02 x 10 ² `	'n b) 6.02 x 1	0 ²³	c) 6.02 x	1024	d) 6.02 x 18 x 10 ²³
Ans:	(C)	£				1	a all ta ala cilitata di t
31.		ne number o	or moles o	or hydroge	n that can	be added to	i mole of a	n oil is the highest in
A	a) Linseed oil b) Groundnut oil c) Sunflower seed oil d) Mustard oil							
Ans:	ans: (a)							

32.	The reaction between sodium and water car	be made less vigorous	by	
	a) lowering the temperature	b) adding a little alcoh	Ol	
A	c) amaigamating sodium	d) adding a little acetic	c acid	
Ans:	(C)			
33.	a) vory high especie prossure	b) low asmatic prossur	-	
	c) no osmotic pressure	d) high osmotic pressu		
Δns·	(c)	d) high oshiotic presse		
34	Silver iodide is used for producing artificial r	ain because Adl		
01.	a) is easy to spray at high altitude			
	b) is easy to synthesize			
	c) has crystal structure similar to ice			
	d) is insoluble in water			
Ans:	(c)			
35.	The equilibrium constant of a reaction is 0.0 the reaction at the same temperature is	08 at 298 K. The standa	ard free energy change of	
	a) +11.96 kJ b) -11.96 kJ	c) -5.43 kJ	d) -8.46 kJ	
Ans:	(a)			
36.	The function of potassium ethyl xanthate in	froth floatation process	is to make the ore	
	a) attracted towards water	b) water repellant		
	c) lighter	d) heavier		
Ans:	(a)			
37.	The correct order of electronegativities of N	, O, F & P is		
A	a) $F > N > P > O$ b) $F > O > P > N$	c) F > O > N > P	d) N > O > F > P	
20	(C)	o manufacturo of Puna	S rubbor is	
30.	a) Mg b) Ca		d) Na	
Δns·				
39	Which of the following is NOT a characteristi	ic of a covalent compour	nd?	
071	a) Low melting point			
	b) No definite geometry			
	c) Insoluble in polar solvent			
	d) Small difference in electronegativity betw	veen the combining aton	ns	
Ans:	(a)			
40.	The volume of 0.1 M oxalic acid that can be solution is	completely oxidized by	20 ml of 0.025 M KMnO ₄	
	a) 125 ml b) 25 ml	c) 12.5 ml	d) 37.5 ml	
Ans:	(c)			
41.	A ligand is			
	a) Lewis acid	b) Bronsted acid		
_	c) either a Lewis acid or a Lewis base	d) Lewis base		
Ans:	(d)			
42.	binary solution of A and B contains A and B in their pure states are in the ratio of 1 : 2. A binary solution of A and B contains A and B in the mole proportion of 1 : 2. The mole fraction of A in the vapour phase of the solution will be			
	a) 0.33 b) 0.2	c) 0.25	d) 0.52	
Ans:	(b)			
			4	

43.	Which of the following statements is TRUE?					
	b) The total entropy of the universe is contin	a) The total entropy of the universe is continuously decreasing				
	c) The total energy of the universe is continu	Jously decreasing				
	d) The total energy of the universe remains	constant				
Ans:	(d)					
44.	5 ml of 0.4 N NaOH is mixed with 20 ml of 0	.1 N HCI. The pH of the resulting solution will be				
	a) 6 b) 7	c) 8 d) 5				
Ans:	(b)					
45.	On adding which of the following, the pH of 2	20 ml of 0.1 N HCl will not alter?				
	a) 1 ml of 1 N HCl	b) 20 ml of distilled water				
	c) 1 ml of 0.1 N NaOH	d) 500 ml of HCl of pH = 1				
Ans:	(d)					
46.	Which one of the following has a potential m	ore than zero?				
	a) Pt, $\frac{1}{2}$ H ₂ (1 atm) HCl (1 M)	b) Pt, $\frac{1}{2}$ H ₂ (1 atm) HCI (2 M)				
	c) Pt, $\frac{1}{2}$ H ₂ (1 atm) HCI (0.1 M)	d) Pt, $\frac{1}{2}$ H ₂ (1 atm) HCI (0.5 M)				
Ans:	(b)					
47.	HCHO was treated with a reagent X. The pro-	oduct formed upon hydrolysis in the presence of				
	an acid gave C_2H_5OH . The reagent X is					
	a) aqueous KOH b) alcoholic KOH	c) alcoholic KCN d) CH_3 MgI				
Ans:	(d)					
48.	Benzylamine is a stronger base than aniline					
	a) The lone pair of electrons on the hitrogen	atom in benzylamine is delocalised				
	b) The lone pair of electrons on the hitrogen	atom in aniline is delocalized				
	c) The ione pair of electrons on the hitrogen	atom in aniline is not involved in resonance				
A m c.	(h) Benzylamine nas a nigher molecular mass					
Ans:	(D) The relative acidic strengths of benzois (acid a taluic acid and a taluic acid is of the				
49.	The relative acidic strengths of benzoic acid, o-toluic acid and p-toluic acid is of the decreasing order:					
	a) p-toluic acid > o-toluic acid > benzoic acid	d				
	b) o-toluic acid > p-toluic acid > benzoic aci	d				
	c) p-toluic acid > benzoic acid > o-toluic ac					
	d) o-toluic acid > benzoic acid > p-toluic acid					
Ans:	: (d)					
50.	The C-H bond C-C bond in ethane are formed by which of the following types of overlap?					
	a) sp ⁻ -s and sp ⁻ -sp ⁻ b) sp ⁻ -s and sp ⁻ -sp ⁻	c) sp-s and sp-sp d) p-s and p-p				
Ans:						
51.	The TUPAC name of					
	OH O					
	a) 4 Hydroxy 2 poptapopo	b) 2 Hydroxy 4 poptanona				
	a) $\frac{1}{2}$ Ovo 4 pentanol	d) 4 Kato 2 pontanol				
Anci						
AUS:	115. (a)					
		5				

52.	A first order reaction is 60% complete in 20 minutes. How long will the reaction take to be 84% complete?						
	a) 54 mins	b) 68 mins	c) 40 mins	d) 76 mins			
Ans:	(c)						
53.	A given sample of r at -3° C, it can be sto	A given sample of milk turns sour at room temperature $(27^{\circ}C)$ in 5 hours. In a refrigerator at -3°C, it can be stored 10 times longer. The energy of activation for the souring of milk is					
	a) 2.303 x 10 R kJ .	mol	b) 2.303 x 5 R kJ . mo				
	c) 2.303 x 3 R kJ . r	nol ⁻ '	d) 2.303 x 2.7 R kJ . n	nol ⁻			
Ans:	(d)						
54.	At 300 K, a gaseous	reaction:					
	$A \rightarrow B + C$						
	Was found to follow 20 minutes was 10 180 mm of Hg. The	first order kinetics. Star 0 mm of Hg. The total partial pressure of A (in	rting with pure A, the to pressure after the com mm of Hg) is	tal pressure at the end of pletion of the reaction is			
	a) 100	b) 90	c) 180	d) 80			
Ans:	(d)						
55.	From the Ellingham	graphs on carbon, whicl	h of the following staten	nents is FALSE?			
	a) CO ₂ is more stabl	le than CO at less than 9	983 K				
	b) CO reduces Fe ₂ O ₃	3 to Fe at less than 983	К				
	c) CO is less stable	than CO ₂ at more than	983 K				
	d) CO reduces Fe ₂ O	3 to Fe in the reduction 2	zone of Blast furnace				
Ans:	(c)						
56.	Which of the following	ng is a negatively charge	ed bidentate ligand?				
	a) Dimethyl glyoximato b) Cyano						
	c) Ethylene diamine		d) Acetato				
Ans:	(a)		-,				
57	The secondary valer	ncy of platinum in tetra :	ammine dichloroplatinur	n (IV) chloride is			
07.	a) ± 4	h) + 2		d) 6			
۸ns	(d)	0) 12		u) U			
58	Which one of the fol	lowing has a magnetic r	moment of 1 75 BM2				
50.	\sim Ti ³⁺	b) V ³⁺	$a) Cr^{3+}$	d) Eo ³⁺			
Anci		0) V		u) re			
AIIS .	\cdot (a) The correct order of ionication one ray of C N \circ C is						
59.		b) C · N · C · F					
A	a) F < N < C < 0	D) C < N < O < F	C) C < O < N < F	a) F < 0 < N < C			
Ans:							
60.	The correct set of four quantum numbers for the outermost electron of sodium ($Z = 11$) is						
	a) 3, 1, 0, 1	b) 3, 1, 1, 1	c) 3, 2, 1, 1 2	d) 3, 0, 0, 1/2			
Ans:	(d)						