Topic: Pre –ECET

Max. Marks:100

1. Solution of
$$\frac{d^3y}{dx^2} + (a + b) \frac{dy}{dx} + aby = 0$$
 is
1) $y = c_1 e^{ax} + c_2 e^{-bx} = 2$) $y = c_1 e^{ax} + c_2 e^{bx} = 3$) $y = c_1 e^{ax} + c_2 e^{-bx} = 4$) $y = c_1 e^{a^2x} + c_2 e^{2bx}$
2. Solution of $\frac{dy}{dx} = y \cot x - \cos ex is$
1) $y = (x + c) \csc x = 2$) $y = (x + c) \sec x = 3$) $y = (x + c) \sin x = 4$) $y = (x + c) \tan x$
3. Solution of $\frac{dy}{dx} = e^{3x} + 2^y + x^2 e^{-2y} is = 1$) $3e^{2y} = 2(x^3 - e^{3x}) + c = 2$) $3e^{2y} = 2(x^{3x} - x^3) + c$
3) $2e^{2y} = 3(e^{3x} + x^3) + c = 4$) $3e^{2y} = 2(e^{3x} + x^3) + c$
4. Solution of $\frac{dy}{dx} = \sec(x + y)$ is
1) $y = \cos(\frac{x + y}{2}) + c = 2$) $y = \tan(\frac{x + y}{2}) + c = 3$) $y = \cot(\frac{x + y}{2}) + c = 4$) $y = \sin(\frac{x - y}{2}) + c$
5. Equation of the curve for which the sub-tangent varies as the reciprocal of the square of the abscissa is
1) $y = c e^{3^3/3k}$ = 2) $y = c e^{3^3/2k}$ = 3) $y = c^{x^3/k}$ (1) $y = c e^{k/x}$
6. The number of arbitrary constants in the general solution of a second order differential equation is
1) $y = c e^{3^3/3k}$ = 2) $2 y - 2 y = 3$ (3) $3 + 4$ (4) $y + 4x + 4y = 0$
8. R.M.S value of the current [=a sinx over a half wave is
1) u^{32} = 2) $u^{3/2}$ = 2) $u^{3/2}$ = 3) $\frac{3}{2}u^{3/3}$ (1) $4u^{3/2}$
9. The area of the region bounded by $a^{3/2}z^{2}x^{2}(a^{2} - x^{2})$ is
1) a^{32} = 2) $u^{3/2}$ = 2) $-\pi \log 2$ = 3) $\frac{\pi}{2} \log 2$ = 4) $\pi \log 2$
13. $\int_{0}^{1} \frac{12x - 1}{1 + x^2} dx = 1$) $-\frac{\pi}{2} \log 2$ = 2) $-\pi \log 2$ = 3) $\frac{\pi}{2} \log 2$ = 4) $\pi \log 2$
13. $\int_{0}^{1} \frac{12x - 1}{1 + x^2} dx = 1$) $\pi \left(\pi - \frac{1}{2}\right)$ = 2) $\pi \left(\frac{\pi}{2} - 1\right)$ = 3) $\frac{\pi}{2} (\pi - 1)$ = 4) $\pi^2 - 1$
15. $\int_{0}^{\frac{\pi}{2}} \sin^4 x \, dx = 1$) $\pi \left(\pi - \frac{1}{2}\right)$ = 2) $\pi \left(\frac{\pi}{2} - 1\right)$ = 3) $\frac{\pi}{2} (\pi - 1)$ = 4) $\pi^2 - 1$
16. $\int 2e^x \left(\frac{\cos x + x \, dx = 1}{1} \frac{\pi}{5112}$ = 2) $\frac{3\pi}{512}$ = 3) $\frac{3}{256}$ = 4) $\frac{11}{112}$
16. $\int 2e^x \left(\frac{\cos x + x \, dx = 1}{1} \frac{\pi}{5112} + 2$ (2) $\frac{3\pi}{512}$ = 3) $\frac{2}{10} (ea)^x} \left(x + \frac{1}{1e(ea)}\right) + c$
17. $\int x e^x a^x dx = 1$) $\frac{(ea)^x}{1 + \log a^x} \left(x - \frac{1}{1 + \log a}\right) + c$ = 4)

The latus rectum of hyperbola is 32 and its eccentricity is 5. The equation of the hyperbola is 1) $\frac{9x^2}{4} - \frac{3y^2}{32} = 1$ 2) $\frac{4x^2}{9} - \frac{y^2}{24} = 1$ 3) $\frac{x^2}{4} - \frac{y^2}{32} = 1$ 4) $\frac{x^2}{6} - \frac{3y^2}{5} = 1$ 30.

- 31.
- If P is any point on the ellipse $4x^2 + 16y^2 = 64$ whose foci are S and S¹ then SP + S¹P= 1) 16 2) 12 3) 8 4) 4 If the latus rectum LL¹ subtends a right angle at the centre of the ellipse, then its e is $1\frac{\sqrt{3}-\sqrt{2}}{2}$ 2) $\frac{\sqrt{5}-1}{2}$ 3) $\frac{\sqrt{2}+1}{3}$ 4) $\frac{\sqrt{3}+1}{2}$ 32.
- If the angle between the lines joining the foci of an ellipse to an extremity of the minor axis 33. is 90⁰, the eccentricity of the ellipse is

1)
$$\frac{1}{\sqrt{2}}$$
 2) $\frac{\sqrt{5}}{2}$ 3) $\frac{1}{\sqrt{3}}$ 4) 1/2

Equation of the tangent at the end of the latusrectum in the first quadrant of the parabola 34. $y^2 = 4x$ is

1) x + y + 1 = 02) x – y + 1=0 3) x + y - 1 = 04) x + y - 9=0The equation of the parabola with latusrectum joining the points (6, 7) and (6, -1) is 35.1) $(y-3)^2 = 8(x-8)$ 2) $(y-3)^2 = 8(x-4)$ 3) $(y+3)^2 = 8(x+4)$ 4) $(y-3)^2=4$ (x+8)

36. 9 7	1) ¼	2) 1/3	$\Delta = a^2 - (b^2 - c^2)$ then $\tan(A^2)$	A/2)= 4) 1
37.	1) b^2	$\sin^2 (C/2) + (a - b)^2 \cos^2(b/2) s^2$	3) c^2	4) a ²
38.	If P_1 , P_2 , P_3 are the le	engths of altitudes of a Δ .	ABC then $\frac{1}{P_1^2} + \frac{1}{P_2^2} + \frac{1}{P_3^2}$	=
	1) Δ	2) (cotA + cotB +cotC)/ Δ	$\Delta 3) \Delta/(\cot A + \cot B + \cot C)$	4) cotA+cotB+cotC
39.	In a ΔABC if the ang	les are in A.P then $\frac{a}{\sqrt{a^2}}$	$\frac{1+C}{2} =$	
	<i>,</i> , , , , , , , , , , , , , , , , , ,	va -	-ac+c	
	1) $\cos\left(\frac{A-C}{2}\right)$	$2) \ 2 \ \cos\left(\frac{A+C}{2}\right)$	3) $\cos\left(\frac{A+C}{2}\right)$ 4) 2 c	$\cos\left(\frac{\mathrm{A}-\mathrm{C}}{2}\right)$
40.		$\tan^{-1}\left(\frac{1}{x}\right) = \tan^{-1}\left(\frac{1}{3}\right)$ the	n x =	
41	1) - 1	2) 0 $(1 - 1)^{(1)} = 0$ theorem -1	3) 1	4) 2
41.	If sin $[2 \cos^{-1} {\cot (2 + 1)} 0]$		3) ± 1 , -1 $\pm \sqrt{2}$	4) $-1, \pm (\sqrt{2} + 1)$
42.			$s3\theta = 0$ lying in the interval	
	1) 2	2) 3	3) 6	4) 1
43.	The value of cosy co	$s\left(\frac{\pi}{2}-x\right)-\cos\left(\frac{\pi}{2}-y\right)\cos\left(\frac{\pi}{2}-y\right)$	$x + \sin y \cos\left(\frac{\pi}{2} - x\right) + \cos x$	$t \sin\left(\frac{\pi}{2} - y\right)$ is zero if
	1) $x = 0$	2) y = 0	3) $x = y$	4) $\mathbf{x} = \frac{3\pi}{4} + \mathbf{y}$
44.		of 16 $\cos^5\theta$ - 20 $\cos^3\theta$ + 5		
	1) - 1	(2) - 2	3) 2	4) 1
45.		of $\cos^2\left(\frac{\pi}{4} + x\right) + (\cos x - \sin x)$		
46.	$\begin{array}{c} 1 \\ 0 \\ \text{If } \cos\left(y - y\right) \\ \cos y \\ \end{array}$	2) $5/2$	3) 3/2	4) 10
40.		ec (x + y) are in A.P then c		
	1) $2\cos\frac{y}{2}$	2) $\sqrt{2} \sin \frac{y}{2}$ 3) -	$\sqrt{2} \cos \frac{y}{2}$ 4) $\cos \frac{y}{2}$	
	(-) $(2-)$			
47.	$\cos^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right)$	$\left +\cos^4\left(\frac{5\pi}{8}\right) + \cos^4\left(\frac{7\pi}{8}\right) \right =$	=	
	1) -3/2	2) 3/2	3) 5/2	4) 2/3
	1) -3/2	2) 3/2		4) 2/3
	1) $-3/2$ If Sin 18 ⁰ = $\frac{\sqrt{5}-1}{4}$ the formula of the second secon	2) 3/2 hen sin 81 ⁰ =	3) 5/2	
	1) $-3/2$ If Sin 18 ⁰ = $\frac{\sqrt{5}-1}{4}$ the formula of the second secon	2) 3/2 hen sin 81 ⁰ =	3) 5/2	
48.	1) -3/2 If Sin 18 ⁰ = $\frac{\sqrt{5} - 1}{4}$ the second secon	2) $3/2$ hen sin $81^{0}=$ 2) $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$	
48.	1) -3/2 If Sin 18 ⁰ = $\frac{\sqrt{5} - 1}{4}$ the second secon	2) 3/2 hen sin 81 ⁰ = 2) $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$ $\frac{-t^2}{4}$ where a is a constant	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$
48.49.	1) $-3/2$ If Sin $18^{0} = \frac{\sqrt{5} - 1}{4}$ the formula of the fo	2) $3/2$ then sin $81^{0}=$ 2) $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$ $\frac{-t^{2}}{t^{2}}$ where a is a constant 2) $x^{2} + 4y^{2} = 4a^{2}$	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^2 + 2y^2 = 3a^2$
48.	1) $-3/2$ If Sin $18^{0} = \frac{\sqrt{5} - 1}{4}$ the formula of the fo	2) $3/2$ then sin $81^{0}=$ 2) $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$ $\frac{-t^{2}}{t^{2}}$ where a is a constant 2) $x^{2} + 4y^{2} = 4a^{2}$	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^2 + 2y^2 = 3a^2$
48.49.50.	1) $-3/2$ If Sin $18^{0} = \frac{\sqrt{5} - 1}{4}$ the formula of the fo	2) $3/2$ hen sin 81^0 = 2) $\frac{\sqrt{3}-\sqrt{5}+\sqrt{5}+\sqrt{5}}{4}$ $\frac{-t^2}{t^2}$ where a is a constant 2) $x^2 + 4y^2 = 4a^2$ quadrant and $\tan A = \frac{4}{3}$ 1) 1	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$ 3) -1	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^2 + 2y^2 = 3a^2$ cosA = 4) 0
48.49.50.	1) $-3/2$ If Sin $18^0 = \frac{\sqrt{5}-1}{4}$ the second	2) $3/2$ hen sin $81^{0}=$ 2) $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$ $\frac{-t^{2}}{4}$ where a is a constant 2) $x^{2} + 4y^{2} = 4a^{2}$ quadrant and $\tan A = \frac{4}{3}$ 1) 1 loubled, units of length and	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^2 + 2y^2 = 3a^2$ cosA = 4) 0
48.49.50.	1) $-3/2$ If Sin $18^0 = \frac{\sqrt{5}-1}{4}$ th 1) $\frac{\sqrt{3+\sqrt{5}}-\sqrt{5-\sqrt{5}}}{4}$ If $x = \frac{2at}{1+t^2}$, $y = \frac{a(1)}{1+t^2}$ 1) $x^2 + y^2 = a^2$ If A lies in the third 1) 2 If the unit of force is consistent of mass is increased by	2) $3/2$ hen sin $81^{0}=$ 2) $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$ $\frac{-t^{2}}{4}$ where a is a constant 2) $x^{2} + 4y^{2} = 4a^{2}$ quadrant and $\tan A = \frac{4}{3}$ 1) 1 loubled, units of length and y	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$ 3) -1 and time are increased four the	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^2 + 2y^2 = 3a^2$ 4) $x^2 + 2y^2 = 3a^2$
48.49.50.51.	1) $-3/2$ If Sin $18^0 = \frac{\sqrt{5}-1}{4}$ the formula of the second secon	2) $3/2$ hen sin $81^{0}=$ 2) $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$ $\frac{-t^{2}}{4}$ where a is a constant 2) $x^{2} + 4y^{2} = 4a^{2}$ quadrant and $\tan A = \frac{4}{3}$ 1) 1 loubled, units of length and y 2) 4 times	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$ 3) -1	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^{2} + 2y^{2} = 3a^{2}$ cosA = 4) 0 times, then the unit 4) 8 times
48.49.50.51.	1) $-3/2$ If Sin $18^0 = \frac{\sqrt{5}-1}{4}$ the formula of the second secon	2) $3/2$ hen sin $81^{0}=$ 2) $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$ $\frac{-t^{2}}{4}$ where a is a constant 2) $x^{2} + 4y^{2} = 4a^{2}$ quadrant and $\tan A = \frac{4}{3}$ 1) 1 loubled, units of length and y 2) 4 times ^a V ^b d ^c , where F is force, A gives a,b,c respectively as	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$ 3) -1 and time are increased four the 3) 6 times A is area, V is velocity and 3	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^2 + 2y^2 = 3a^2$ 4) $x^2 + 2y^2 = 3a^2$ 4) 0 5 times, then the unit 4) 8 times d' is density, the
 48. 49. 50. 51. 52. 	1) $-3/2$ If Sin $18^0 = \frac{\sqrt{5}-1}{4}$ the formula of the second secon	2) $3/2$ hen sin $81^{0}=$ 2) $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$ $\frac{-t^{2}}{4}$ where a is a constant 2) $x^{2} + 4y^{2} = 4a^{2}$ quadrant and $\tan A = \frac{4}{3}$ 1) 1 loubled, units of length and y 2) 4 times a V ^b d ^c , where F is force, A gives a,b,c respectively as 2) 2, 1, 1	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$ 3) -1 and time are increased four a^3 3) 6 times A is area, V is velocity and a^3 3) $1, 1, 2$	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^{2} + 2y^{2} = 3a^{2}$ 4) $x^{2} + 2y^{2} = 3a^{2}$ 4) 0 5 $x^{2} + 2y^{2} = 3a^{2}$ 5 $x^{2} + 2y^{2} = 3a^{2}$ 6 $x^{2} + 2y^{2} = 3a^{2}$ 7 $x^{2} + 2y^{2} = 3a^{2}$ 7 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 7 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 7 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 9 $x^{2} + 3a^{2}$ 9 $x^{2} + 3a^{2}$ 9 $x^{2} + 3a^{2}$ 9 $x^{2} + 3a^{2}$ 10 $x^{2} + 3$
 48. 49. 50. 51. 52. 	1) $-3/2$ If Sin $18^0 = \frac{\sqrt{5}-1}{4}$ the formula of the second secon	2) $3/2$ hen sin $81^{0}=$ 2) $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$ $\frac{-t^{2}}{4}$ where a is a constant 2) $x^{2} + 4y^{2} = 4a^{2}$ quadrant and $\tan A = \frac{4}{3}$ 1) 1 loubled, units of length and y 2) 4 times a V ^b d ^c , where F is force, A gives a,b,c respectively as 2) 2, 1, 1	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$ 3) -1 and time are increased four the 3) 6 times A is area, V is velocity and 3	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^{2} + 2y^{2} = 3a^{2}$ 4) $x^{2} + 2y^{2} = 3a^{2}$ 4) 0 5 $x^{2} + 2y^{2} = 3a^{2}$ 5 $x^{2} + 2y^{2} = 3a^{2}$ 6 $x^{2} + 2y^{2} = 3a^{2}$ 7 $x^{2} + 2y^{2} = 3a^{2}$ 7 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 7 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 7 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 9 $x^{2} + 3a^{2}$ 9 $x^{2} + 3a^{2}$ 9 $x^{2} + 3a^{2}$ 9 $x^{2} + 3a^{2}$ 10 $x^{2} + 3$
 48. 49. 50. 51. 52. 	1) $-3/2$ If Sin $18^0 = \frac{\sqrt{5}-1}{4}$ the formula of the second secon	2) $3/2$ hen sin $81^{0}=$ 2) $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$ $\frac{-t^{2}}{4}$ where a is a constant 2) $x^{2} + 4y^{2} = 4a^{2}$ quadrant and $\tan A = \frac{4}{3}$ 1) 1 loubled, units of length and y 2) 4 times a V ^b d ^c , where F is force, A gives a,b,c respectively as 2) 2, 1, 1 ertically up and another w	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$ 3) -1 and time are increased four a^2 3) 6 times A is area, V is velocity and a^2 3) $1, 1, 2$ vector Q points towards ease	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^{2} + 2y^{2} = 3a^{2}$ 4) $x^{2} + 2y^{2} = 3a^{2}$ 4) 0 5 $x^{2} + 2y^{2} = 3a^{2}$ 5 $x^{2} + 2y^{2} = 3a^{2}$ 6 $x^{2} + 2y^{2} = 3a^{2}$ 7 $x^{2} + 2y^{2} = 3a^{2}$ 7 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 7 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 7 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 8 $x^{2} + 2y^{2} = 3a^{2}$ 9 $x^{2} + 3a^{2}$ 9 $x^{2} + 3a^{2}$ 9 $x^{2} + 3a^{2}$ 9 $x^{2} + 3a^{2}$ 10 $x^{2} + 3$
 48. 49. 50. 51. 52. 53. 	1) $-3/2$ If Sin $18^0 = \frac{\sqrt{5} - 1}{4}$ the formula of the second state of the seco	2) $3/2$ hen sin $81^{0}=$ 2) $\frac{\sqrt{3}-\sqrt{5}+\sqrt{5}+\sqrt{5}}{4}$ $\frac{-t^{2}}{4}$ where a is a constant 2) $x^{2} + 4y^{2} = 4a^{2}$ quadrant and $\tan A = \frac{4}{3}$ 1) 1 loubled, units of length and y 2) 4 times a V ^b d ^c , where F is force, A gives a,b,c respectively as 2) 2, 1, 1 ertically up and another w 2) along south naximum and minimum r	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$ 3) -1 and time are increased four a^2 3) 6 times A is area, V is velocity and a^2 3) $1, 1, 2$ vector Q points towards ease	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^2 + 2y^2 = 3a^2$ 4) $x^2 + 2y^2 = 3a^2$ 4) 0 5 cosA = 4) 0 5 times, then the unit 4) 8 times d' is density, the 4) $0, 1, 1$ 5 the direction of 4 cost of the direction of 4 cost of the direction of
 48. 49. 50. 51. 52. 53. 	1) $-3/2$ If Sin $18^0 = \frac{\sqrt{5}-1}{4}$ the formula of the second state of the second	2) $3/2$ hen sin $81^{0}=$ 2) $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$ $\frac{-t^{2}}{4}$ where a is a constant 2) $x^{2} + 4y^{2} = 4a^{2}$ quadrant and $\tan A = \frac{4}{3}$ 1) 1 loubled, units of length and y 2) 4 times a V ^b d ^c , where F is force, A gives a,b,c respectively as 2) 2, 1, 1 ertically up and another w 2) along south maximum and minimum r s are of magnitudes	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$ 3) -1 and time are increased four the 3) 6 times 4 is area, V is velocity and 6 3) 1, 1, 2 vector Q points towards ease 3) zero 4) we resultants of two forces are	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^2 + 2y^2 = 3a^2$ 4) $x^2 + 2y^2 = 3a^2$ 4) 0 4) 0 4) 0 4) 0 5 times 5 d' is density, the 5 d' is d' is density, the 5 d' is d' is d' is density, the
 48. 49. 50. 51. 52. 53. 54. 	1) $-3/2$ If Sin $18^0 = \frac{\sqrt{5}-1}{4}$ the formula of the second secon	2) $3/2$ hen sin $81^{0}=$ 2) $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$ $\frac{-t^{2}}{4}$ where a is a constant 2) $x^{2} + 4y^{2} = 4a^{2}$ quadrant and $\tan A = \frac{4}{3}$ 1) 1 loubled, units of length and y 2) 4 times a V ^b d ^c , where F is force, A gives a,b,c respectively as 2) 2, 1, 1 ertically up and another w 2) along south naximum and minimum r s are of magnitudes 2) 6, 3	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$ 3) -1 and time are increased four a^2 3) 6 times A is area, V is velocity and a^2 3) 1, 1, 2 vector Q points towards eas 3) zero 4) we resultants of two forces are 3) 5, 4	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^2 + 2y^2 = 3a^2$ 4) $x^2 + 2y^2 = 3a^2$ 4) 0 5 cosA = 4) 0 6 times, then the unit 4) 8 times 6 d' is density, the 4) $0, 1, 1$ 5 the direction of 5 certically downward 9 and 3 4) 8, 1
 48. 49. 50. 51. 52. 53. 54. 	1) $-3/2$ If Sin $18^0 = \frac{\sqrt{5} - 1}{4}$ the formation of the equation of th	2) $3/2$ hen sin 81^0 = 2) $\frac{\sqrt{3}-\sqrt{5}+\sqrt{5}+\sqrt{5}}{4}$ $\frac{-t^2}{4}$ where a is a constant 2) $x^2 + 4y^2 = 4a^2$ quadrant and $\tan A = \frac{4}{3}$ 1) 1 loubled, units of length and y 2) 4 times a V ^b d ^c , where F is force, A gives a,b,c respectively as 2) 2, 1, 1 ertically up and another w 2) along south naximum and minimum r s are of magnitudes 2) 6, 3 astward with a velocity of	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$ 3) -1 and time are increased four a^2 3) 6 times 4 is area, V is velocity and a^2 3) $1, 1, 2$ vector Q points towards eas 3) $2ero$ 4) we resultants of two forces are 3) $5, 4$ f 5 ms ⁻¹ . In 10 seconds the	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^2 + 2y^2 = 3a^2$ 4) $x^2 + 2y^2 = 3a^2$ 4) 0 5 cosA = 4) 0 6 times, then the unit 4) 8 times 6 d' is density, the 4) $0, 1, 1$ 5 the direction of 5 certically downward 9 and 3 4) 8, 1
 48. 49. 50. 51. 52. 53. 54. 55. 	1) $-3/2$ If Sin $18^0 = \frac{\sqrt{5}-1}{4}$ the formula of the second secon	2) $3/2$ hen sin 81^0 = 2) $\frac{\sqrt{3}-\sqrt{5}+\sqrt{5}+\sqrt{5}}{4}$ $\frac{-t^2}{4}$ where a is a constant 2) $x^2 + 4y^2 = 4a^2$ quadrant and $\tan A = \frac{4}{3}$ 1) 1 loubled, units of length and y 2) 4 times a V ^b d ^c , where F is force, A gives a,b,c respectively as 2) 2, 1, 1 ertically up and another w 2) along south maximum and minimum r s are of magnitudes 2) 6, 3 astward with a velocity of ind the average accelerations 2) 1/2 m/s ² north-west	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$ 3) -1 and time are increased four the 3) 6 times 4 is area, V is velocity and 5 3) 1, 1, 2 vector Q points towards eas 3) $1, 1, 2$ vector Q points towards eas 3) zero 4) we resultants of two forces are 3) 5, 4 f 5 ms ⁻¹ . In 10 seconds the ion in this time st 3) $1/\sqrt{2}$ ms ⁻² east-west	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^2 + 2y^2 = 3a^2$ 4) $x^2 + 2y^2 = 3a^2$ 4) 0 4) 0 4) 0 4) 0 5) 1 5) 1 5) 1 6) 1 7) 1 7) 1 7) 1 8) 1 7) 1 7) 1 8) 1 7) 1 7) 1 8) 1 8) 1 7) 1 8) 1
 48. 49. 50. 51. 52. 53. 54. 55. 	1) $-3/2$ If Sin $18^0 = \frac{\sqrt{5} - 1}{4}$ the formation of the equation of th	2) $3/2$ hen sin 81^0 = 2) $\frac{\sqrt{3}-\sqrt{5}+\sqrt{5}+\sqrt{5}}{4}$ $\frac{-t^2}{4}$ where a is a constant 2) $x^2 + 4y^2 = 4a^2$ quadrant and $\tan A = \frac{4}{3}$ 1) 1 loubled, units of length and y 2) 4 times a V ^b d ^c , where F is force, A gives a,b,c respectively as 2) 2, 1, 1 ertically up and another w 2) along south maximum and minimum r s are of magnitudes 2) 6, 3 astward with a velocity of ind the average accelerations 2) 1/2 m/s ² north-west	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$ 3) -1 and time are increased four the 3) 6 times 4 is area, V is velocity and the 3) 1, 1, 2 vector Q points towards ease 3) $1, 1, 2$ vector Q points towards ease 3) zero 4) vector are 3) 5, 4 f 5 ms ⁻¹ . In 10 seconds the ion in this time	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^2 + 2y^2 = 3a^2$ 4) $x^2 + 2y^2 = 3a^2$ 4) 0 4) 0 4) 0 4) 0 5) 1 5) 1 5) 1 6) 1 7) 1 7) 1 7) 1 8) 1 7) 1 7) 1 8) 1 7) 1 7) 1 7) 1 8) 1 7) 1 7) 1 8) 1 8) 1 7) 1 8) 1
 48. 49. 50. 51. 52. 53. 54. 55. 	1) $-3/2$ If Sin $18^0 = \frac{\sqrt{5} - 1}{4}$ the formula of the second sec	2) $3/2$ hen sin 81^0 = 2) $\frac{\sqrt{3}-\sqrt{5}+\sqrt{5}+\sqrt{5}}{4}$ $\frac{-t^2}{4}$ where a is a constant 2) $x^2 + 4y^2 = 4a^2$ quadrant and $\tan A = \frac{4}{3}$ 1) 1 loubled, units of length and y 2) 4 times a V ^b d ^c , where F is force, A gives a,b,c respectively as 2) 2, 1, 1 ertically up and another w 2) along south maximum and minimum r s are of magnitudes 2) 6, 3 astward with a velocity of ind the average accelerations 2) 1/2 m/s ² north-west	3) $5/2$ 3) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ and then 3) $x^2 - y^2 = a^2$ then the value of $3\sin A - 4$ 3) -1 and time are increased four the 3) 6 times 4 is area, V is velocity and 5 3) 1, 1, 2 vector Q points towards eas 3) $1, 1, 2$ vector Q points towards eas 3) zero 4) we resultants of two forces are 3) 5, 4 f 5 ms ⁻¹ . In 10 seconds the ion in this time st 3) $1/\sqrt{2}$ ms ⁻² east-west	4) $\frac{\sqrt{3} + \sqrt{5}}{4}$ 4) $x^2 + 2y^2 = 3a^2$ 4) $x^2 + 2y^2 = 3a^2$ 4) 0 4) 0 4) 0 4) 0 5) 1 5) 1 5) 1 6) 1 7) 1 7) 1 7) 1 8) 1 7) 1 7) 1 8) 1 7) 1 7) 1 8) 1 8) 1 7) 1 8) 1

57.	Velocity s-time curve for a body		
50	1) parabola 2) ellips		4) straight line
58.		same velocity. One body is projected to C_{00} to the herizontal, the ratio of	-
	1) $3:1$ 2) $1:3$	le 60° to the horizontal, the ratio of 3) 1 : 2	4) $2:1$
59	· · · · · · · · · · · · · · · · · · ·	tossed a coin vertically upwards. T	*
57.		Then the train must be moving w	
	1) deceleration 2) accele		(y 4) none of these
60		lisplacement in the last second is e	•
00.	the first 3 seconds, the time of f	-	quar to the anspiacement m
	1) 9 sec 2) 4 sec		4) 5 sec
61.	, , , , , , , , , , , , , , , , , , , ,	gm with a velocity of 30 ms ⁻¹ . Beca	
	back with a velocity of 1 ms ⁻¹ .		
	1) 15 Kg 2) 30 Kg		4) 20 Kg
62.	5 bullets each of mass 200gm an	re fired with a velocity of $10 ms^{-1}$ in	to a block of mass 3 Kg at
		bullets are embedded in it, the blo	
	1) 10 ms^{-1} 2) 20 ms^{-1}		4) 2 ms^1
63.		n have their kinetic energies in the	ratio 8 : 1. Then the ratio
	of their momenta is		
64	1) 1 : 1 2) 2 : 1	3) 4 : 1	
04.	is 75%, the power of the pump i	er to a height of 30m in one hour. I	i the efficiency of the pump
	1) 2 KW 2) 3KW		4) 1KW
65	· · · · · · · · · · · · · · · · · · ·	he earth from a height of 10m. Its	,
00.	ground is	ne cartin from a neight of rom. Its	
	1) 39.2J 2) 58.8J	3) 100J	4) 10.8J
66.		polishing it, beyond a certain limit	
	-	ase 3) decreases more rapidly	
67.	A 30 Kg box is to move up an in	clined slope of 30° to the horizonta	l at a uniform velocity of 5
	m/sec. If the frictional force ret	arding the motion is 150N, the hor	rizontal force in Newton to
	move up is (g=10 m/s ²)		
	1) $200 \times \frac{2}{3}$ N	$300 \times \frac{\sqrt{3}}{2}$ N 3) 300 N	1) nono
	1) $300 \times \frac{2}{\sqrt{3}}$ N 2)	$\frac{300 \times -2}{2}$ N 3) 300 N	4) none
68.		cm at 0°C and 100.1 cm at 100°C.	What is the coefficient of
	_		
	volume expansion of material		
	volume expansion of material 1) 3×10^{-5} /°C 2) 30×10^{-5}	$10^{-5}/{}^{0}\mathrm{C}$ 3) $0.3 \times 10^{-5}/{}^{0}\mathrm{C}$	4) $30 \times 10^{-4} / {}^{0}C$
69.	1) 3×10^{-5} /°C 2) 30×10^{-5} There is 2 c.c of mercury at 0°C	in a mercury thermometer betwee	n 0°C and 100°C marks on
69.	1) 3×10^{-5} /°C 2) 30×10^{-5} There is 2 c.c of mercury at 0°C the stem is 40 cm and the diam	,	n 0°C and 100°C marks on
69.	1) 3×10^{-5} /°C 2) 30×10^{-5} There is 2 c.c of mercury at 0°C the stem is 40 cm and the diam expansion of mercury is	in a mercury thermometer betwee eter of the base is 0.032 cm. The c	on 0°C and 100°C marks on oefficient of apparent
	1) $3 \times 10^{-5/0}$ C2) $30 \times 10^{-5/0}$ CThere is 2 c.c of mercury at 0°Cthe stem is 40 cm and the diamexpansion of mercury is1) 1613/°C2) 0.001	in a mercury thermometer betwee eter of the base is 0.032 cm. The c .612/°C 3) 0.0001613/°C	on 0°C and 100°C marks on oefficient of apparent 4) 1.613 × 10 ^{-9/°} C
	1) $3 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C There is 2 c.c of mercury at 0°C the stem is 40 cm and the diam expansion of mercury is 1) $1613/^{0}$ C 2) 0.001 A gas is filled in a vessel at a provide the stem is 10^{-5/0}C 2) 0.001	in a mercury thermometer betwee eter of the base is 0.032 cm. The c .612/°C 3) 0.0001613/°C ressure of 76 cm of Hg. Now one-fo	on 0°C and 100°C marks on oefficient of apparent 4) 1.613 × 10 ⁻⁹ /°C ourth of original mass of gas
	1) $3 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C There is 2 c.c of mercury at 0°C the stem is 40 cm and the diam expansion of mercury is 1) $1613/^{0}$ C 2) 0.001 A gas is filled in a vessel at a preleaks out. What will be the new	in a mercury thermometer betwee eter of the base is 0.032 cm. The c .612/°C 3) 0.0001613/°C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not	on 0°C and 100°C marks on oefficient of apparent 4) 1.613 × 10 ⁻⁹ /°C ourth of original mass of gas change
70.	1) 3×10^{-5} /°C2) 30×10^{-5} There is 2 c.c of mercury at 0°Cthe stem is 40 cm and the diamexpansion of mercury is1) 1613/°C2) 0.001A gas is filled in a vessel at a prleaks out. What will be the new1) 60 cm of Hg2) 10 cm	in a mercury thermometer betwee eter of the base is 0.032 cm. The c .612/°C 3) 0.0001613/°C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg	on 0°C and 100°C marks on oefficient of apparent 4) $1.613 \times 10^{-9/0}$ C ourth of original mass of gas change 4) 76 cm of Hg
70.	1) $3 \times 10^{-5/0}$ C2) $30 \times 10^{-5/0}$ CThere is 2 c.c of mercury at 0°Cthe stem is 40 cm and the diamexpansion of mercury is1) 1613/°C2) 0.001A gas is filled in a vessel at a prleaks out. What will be the new1) 60 cm of Hg2) 10 cmA sample of O2 gas and a sample	in a mercury thermometer betwee eter of the base is 0.032 cm. The c $612/^{\circ}$ C 3) $0.0001613/^{\circ}$ C ressure of 76 cm of Hg. Now one-for w pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same ma	on 0°C and 100°C marks on oefficient of apparent 4) $1.613 \times 10^{-9/0}$ C ourth of original mass of gas change 4) 76 cm of Hg ass, the same volume and the
70.	1) $3 \times 10^{-5}/^{\circ}$ C2) 30×10^{-5} There is 2 c.c of mercury at 0°Cthe stem is 40 cm and the diamercury is1) 1613/°C2) 0.001A gas is filled in a vessel at a properties1) 60 cm of Hg2) 10 cmA sample of O2 gas and a samplesame pressure. Assuming them	in a mercury thermometer betwee eter of the base is 0.032 cm. The c $612/^{0}$ C 3) $0.0001613/^{0}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same main n to be perfect gases, the ratio of th	on 0°C and 100°C marks on oefficient of apparent 4) $1.613 \times 10^{-9/0}$ C ourth of original mass of gas change 4) 76 cm of Hg ass, the same volume and the
70.	1) $3 \times 10^{-5/0}$ C2) $30 \times 10^{-5/0}$ CThere is 2 c.c of mercury at 0°Cthe stem is 40 cm and the diamexpansion of mercury is1) 1613/°C2) 0.001A gas is filled in a vessel at a prleaks out. What will be the new1) 60 cm of Hg2) 10 cmA sample of O2 gas and a sample	in a mercury thermometer betwee eter of the base is 0.032 cm. The c $612/^{0}$ C 3) $0.0001613/^{0}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same main n to be perfect gases, the ratio of th	on 0°C and 100°C marks on oefficient of apparent 4) $1.613 \times 10^{-9/0}$ C ourth of original mass of gas change 4) 76 cm of Hg ass, the same volume and the
70. 71.	1) $3 \times 10^{-5/0}$ C2) $30 \times 10^{-5/0}$ CThere is 2 c.c of mercury at 0°Cthe stem is 40 cm and the diamexpansion of mercury is1) 1613/°C2) 0.001A gas is filled in a vessel at a prleaks out. What will be the new1) 60 cm of Hg2) 10 cmA sample of O2 gas and a samplesame pressure. Assuming themthe temperature of the H2 gas is1) 1 : 162) 2 :8	in a mercury thermometer betwee eter of the base is 0.032 cm. The c $612/^{0}$ C 3) $0.0001613/^{0}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same main n to be perfect gases, the ratio of th s	0 C and 100°C marks on oefficient of apparent 4) 1.613 × 10 ^{-9/0} C ourth of original mass of gas change 4) 76 cm of Hg ass, the same volume and the the temperature of O ₂ gas to 4) 4 : 9
70. 71.	1) $3 \times 10^{-5/0}$ C2) $30 \times 10^{-5/0}$ CThere is 2 c.c of mercury at 0°Cthe stem is 40 cm and the diamexpansion of mercury is1) 1613/°C2) 0.001A gas is filled in a vessel at a prleaks out. What will be the new1) 60 cm of Hg2) 10 cmA sample of O2 gas and a samplesame pressure. Assuming themthe temperature of the H2 gas is1) 1 : 162) 2 :8	in a mercury thermometer betwee eter of the base is 0.032 cm. The c $612/^{\circ}$ C 3) $0.0001613/^{\circ}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same main to be perfect gases, the ratio of the s 3) 3 : 4 ssuming that 50% of the kinetic end	0 C and 100°C marks on oefficient of apparent 4) 1.613 × 10 ^{-9/0} C ourth of original mass of gas change 4) 76 cm of Hg ass, the same volume and the the temperature of O ₂ gas to 4) 4 : 9
70. 71.	1) $3 \times 10^{-5/0}$ C2) $30 \times 10^{-5/0}$ CThere is 2 c.c of mercury at 0°Cthe stem is 40 cm and the diamexpansion of mercury is1) 1613/°C2) 0.001A gas is filled in a vessel at a prleaks out. What will be the new1) 60 cm of Hg2) 10 cmA sample of O2 gas and a samplesame pressure. Assuming themthe temperature of the H2 gas is1) 1 : 162) 2 :8A water fall is in 84 m high. As	in a mercury thermometer betwee eter of the base is 0.032 cm. The c $1.612/^{\circ}$ C 3) $0.0001613/^{\circ}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same main n to be perfect gases, the ratio of the s 3) 3 : 4 ssuming that 50% of the kinetic energy mperature of water will be	0 C and 100°C marks on oefficient of apparent 4) 1.613 × 10 ^{-9/0} C ourth of original mass of gas change 4) 76 cm of Hg ass, the same volume and the the temperature of O ₂ gas to 4) 4 : 9
70.71.72.	1) $3 \times 10^{-5/0}$ C2) $30 \times 10^{-5/0}$ CThere is 2 c.c of mercury at 0°Cthe stem is 40 cm and the diamexpansion of mercury is1) 1613/°C2) 0.001A gas is filled in a vessel at a prleaks out. What will be the new1) 60 cm of Hg2) 10 cmA sample of O2 gas and a samplesame pressure. Assuming themthe temperature of the H2 gas is1) 1 : 162) 2 :8A water fall is in 84 m high. Asconverted to heat, the rise in tee1) 0.098°C2) 0.98%During an adiabatic expansion	in a mercury thermometer betwee eter of the base is 0.032 cm . The c $612/^{\circ}$ C 3) $0.0001613/^{\circ}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same main to be perfect gases, the ratio of the s 3) 3 : 4 ssuming that 50% of the kinetic end mperature of water will be C 3) 89°C of 2 moles of a gas, the change in in	the temperature of O_2 gas to 4) $1.613 \times 10^{-9/0}$ C burth of original mass of gas change 4) 76 cm of Hg uss, the same volume and the the temperature of O_2 gas to 4) $4:9$ ergy of the falling water gets 4) 9.8° C nternal energy was found to
70.71.72.	1) $3 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C There is 2 c.c of mercury at 0° C the stem is 40 cm and the diam expansion of mercury is 1) 1613° C 2) 0.001 A gas is filled in a vessel at a preleaks out. What will be the new 1) 60 cm of Hg 2) 10 cm A sample of O_2 gas and a sample same pressure. Assuming them the temperature of the H ₂ gas is 1) $1 \cdot 16$ 2) $2 \cdot 8$ A water fall is in 84 m high. As converted to heat, the rise in term 1) 0.098° C 2) 0.98° C During an adiabatic expansion be equal to $-100J$. The workdow	in a mercury thermometer betwee eter of the base is 0.032 cm. The c $1.612/^{\circ}$ C 3) $0.0001613/^{\circ}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not a of Hg 3) 57 cm of Hg le of H ₂ gas both have the same mains to be perfect gases, the ratio of the s 3) 3 : 4 ssuming that 50% of the kinetic end mperature of water will be C 3) 89°C of 2 moles of a gas, the change in its one during the process will be equal	to 0° C and 100° C marks on oefficient of apparent 4) $1.613 \times 10^{-9/\circ}$ C ourth of original mass of gas change 4) 76 cm of Hg ass, the same volume and the the temperature of O ₂ gas to 4) 4 : 9 ergy of the falling water gets 4) 9.8°C nternal energy was found to 1 to
70.71.72.73.	1) $3 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C There is 2 c.c of mercury at 0° C the stem is 40 cm and the diam expansion of mercury is 1) 1613° C 2) 0.001 A gas is filled in a vessel at a properties of 1 a properties of 1 a properties of 1 a properties of Hg 2) 10 cm A sample of O ₂ gas and a sample same pressure. Assuming them the temperature of the H ₂ gas is 1) 1 : 16 2) 2 : 8 A water fall is in 84 m high. As converted to heat, the rise in term 1) 0.098° C 2) 0.98° C During an adiabatic expansion be equal to – 100J. The workdow 1) zero 2) –100	in a mercury thermometer betwee eter of the base is 0.032 cm. The c $1.612/^{\circ}$ C 3) $0.0001613/^{\circ}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same main to be perfect gases, the ratio of the s 3) 3 : 4 suming that 50% of the kinetic end mperature of water will be C 3) 89°C of 2 moles of a gas, the change in in one during the process will be equa Joules 3) 200 Joule	the of C and 100°C marks on officient of apparent (4) $1.613 \times 10^{-9/0}$ C burth of original mass of gas change (4) 76 cm of Hg ass, the same volume and the the temperature of O ₂ gas to (4) 4 : 9 ergy of the falling water gets (4) 9.8° C internal energy was found to 1 to (4) 100 Joule
70.71.72.	1) $3 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C There is 2 c.c of mercury at 0° C the stem is 40 cm and the diam expansion of mercury is 1) 1613° C 2) 0.001 A gas is filled in a vessel at a prease of 100 and 100 cm of Hg 2) 10 cm A sample of 0_2 gas and a sample and 100 cm of Hg 2) 10 cm A sample of 0_2 gas and a sample same pressure. Assuming them the temperature of the H ₂ gas is 1) $1:16$ 2) $2:8$ A water fall is in 84 m high. As converted to heat, the rise in term 1) 0.098° C 2) 0.98° C 2) 0.98° C During an adiabatic expansion be equal to -100 J. The workdow 1) zero 2) -100 A sphere, a cube and a thin circle	in a mercury thermometer betwee eter of the base is 0.032 cm. The c $612/^{\circ}$ C 3) $0.0001613/^{\circ}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same main to be perfect gases, the ratio of the s 3) 3 : 4 ssuming that 50% of the kinetic end mperature of water will be C 3) 89°C of 2 moles of a gas, the change in its one during the process will be equa Joules 3) 200 Joule cular plate, all made of the same m	the temperature of O_2 gas to 4) 1.613 × 10 ^{-9/0} C burth of original mass of gas change 4) 76 cm of Hg uss, the same volume and the the temperature of O_2 gas to 4) 4 : 9 the falling water gets 4) 9.8 ⁰ C nternal energy was found to 1 to 4) 100 Joule aterial and having the same
70.71.72.73.	1) $3 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) 0.001 There is 2 c.c of mercury at 0° C the stem is 40 cm and the diam expansion of mercury is 1) 1613° C 2) 0.001 A gas is filled in a vessel at a probability of 2) 0.001 A gas is filled in a vessel at a probability of 100 cm of Hg 2) 10 cm A sample of 0_2 gas and a sample same pressure. Assuming them the temperature of the H ₂ gas is 1) $1:16$ 2) $2:8$ A water fall is in 84 m high. As converted to heat, the rise in term 1) 0.098° C 2) 0.98° C During an adiabatic expansion be equal to $-100J$. The workdot 1) zero 2) -100 A sphere, a cube and a thin circ mass are initially heated to a term.	in a mercury thermometer betwee eter of the base is 0.032 cm. The c $612/^{0}$ C 3) $0.0001613/^{0}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same ma n to be perfect gases, the ratio of th s 3) 3 : 4 suming that 50% of the kinetic end mperature of water will be C 3) 89°C of 2 moles of a gas, the change in it one during the process will be equa Joules 3) 200 Joule cular plate, all made of the same m	an 0°C and 100°C marks on oefficient of apparent 4) $1.613 \times 10^{-9/0}$ C ourth of original mass of gas change 4) 76 cm of Hg ass, the same volume and the the temperature of O ₂ gas to 4) 4 : 9 ergy of the falling water gets 4) 9.8°C internal energy was found to 1 to 4) 100 Joule aterial and having the same ese will cool fastest
 70. 71. 72. 73. 74. 	1) $3 \times 10^{-5/0}$ C2) $30 \times 10^{-5/0}$ CThere is 2 c.c of mercury at 0°Cthe stem is 40 cm and the diamexpansion of mercury is1) 1613/°C2) 0.001A gas is filled in a vessel at a prleaks out. What will be the new1) 60 cm of Hg2) 10 cmA sample of O2 gas and a samplesame pressure. Assuming themthe temperature of the H2 gas is1) 1 : 162) 2 :8A water fall is in 84 m high. Asconverted to heat, the rise in ter1) 0.098°C2) 0.98°During an adiabatic expansionbe equal to - 100J. The workdot1) zero2) -100A sphere, a cube and a thin circormass are initially heated to a ter1) sphere2) cube	in a mercury thermometer betwee eter of the base is 0.032 cm . The c $612/^{\circ}$ C 3) $0.0001613/^{\circ}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not a of Hg 3) 57 cm of Hg le of H ₂ gas both have the same main to be perfect gases, the ratio of the s 3) 3 : 4 ssuming that 50% of the kinetic end mperature of water will be C 3) 89°C of 2 moles of a gas, the change in its one during the process will be equation Joules 3) 200 Joule cular plate, all made of the same m emperature of 3000°C. Which of th 3) plate	the temperature of O_2 gas to 4) 1.613 × 10 ^{-9/0} C burth of original mass of gas change 4) 76 cm of Hg uss, the same volume and the the temperature of O_2 gas to 4) 4 : 9 the falling water gets 4) 9.8 ⁰ C nternal energy was found to 1 to 4) 100 Joule aterial and having the same
 70. 71. 72. 73. 74. 	1) $3 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) 0.001 A state in the stem is 40 cm and the diamexpansion of mercury is 1) $1613^{/0}$ C 2) 0.001 A gas is filled in a vessel at a probability of 2 and 2 and 2 and 2 and 2 and 2 and 3 an	in a mercury thermometer betwee eter of the base is 0.032 cm . The c $612/^{\circ}$ C 3) $0.0001613/^{\circ}$ C ressure of 76 cm of Hg. Now one-for w pressure if temperature does not a of Hg 3) 57 cm of Hg le of H ₂ gas both have the same main to be perfect gases, the ratio of the s 3) 3 : 4 ssuming that 50% of the kinetic end mperature of water will be C 3) 89°C of 2 moles of a gas, the change in it one during the process will be equa Joules 3) 200 Joule cular plate, all made of the same m emperature of 3000°C. Which of th 3) plate egarding reverberation time	an 0°C and 100°C marks on oefficient of apparent 4) $1.613 \times 10^{-9/0}$ C ourth of original mass of gas change 4) 76 cm of Hg ass, the same volume and the the temperature of O ₂ gas to 4) 4 : 9 ergy of the falling water gets 4) 9.8°C internal energy was found to 1 to 4) 100 Joule aterial and having the same ese will cool fastest
 70. 71. 72. 73. 74. 	1) $3 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) 0.001 There is 2 c.c of mercury at 0° C the stem is 40 cm and the diam expansion of mercury is 1) 1613° C 2) 0.001 A gas is filled in a vessel at a probability of 2) 0.001 A gas is filled in a vessel at a probability of 0^{2} gas and a sample of 0^{2} gas and a sample of 0^{2} gas and a sample same pressure. Assuming them the temperature of the H ₂ gas is 1) $1:16$ 2) $2:8$ A water fall is in 84 m high. As converted to heat, the rise in term 1) 0.098° C 2) 0.98° C	in a mercury thermometer betwee eter of the base is 0.032 cm . The c $612/^{\circ}$ C 3) $0.0001613/^{\circ}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same ma n to be perfect gases, the ratio of th s 3) 3 : 4 ssuming that 50% of the kinetic end mperature of water will be C 3) 89^{\circ}C of 2 moles of a gas, the change in it one during the process will be equa Joules 3) 200 Joule cular plate, all made of the same m emperature of 3000^{\circ}C. Which of th 3) plate egarding reverberation time absorption is more	an 0°C and 100°C marks on oefficient of apparent 4) $1.613 \times 10^{-9/0}$ C ourth of original mass of gas change 4) 76 cm of Hg ass, the same volume and the the temperature of O ₂ gas to 4) 4 : 9 ergy of the falling water gets 4) 9.8°C internal energy was found to 1 to 4) 100 Joule aterial and having the same ese will cool fastest
 70. 71. 72. 73. 74. 	1) $3 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) 0.001 There is 2 c.c of mercury at 0° C the stem is 40 cm and the diam expansion of mercury is 1) 1613° C 2) 0.001 A gas is filled in a vessel at a probability of 1000 cm of Hg 2) 100 cm A sample of 0_2 gas and a sample same pressure. Assuming them the temperature of the H ₂ gas is 1) $1:16$ 2) $2:8$ A water fall is in 84 m high. As converted to heat, the rise in term 1) 0.098° C 2) 0.98° C 2)	in a mercury thermometer betwee eter of the base is 0.032 cm. The c $612/^{0}$ C 3) $0.0001613/^{0}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same main to be perfect gases, the ratio of this 3) 3 : 4 ssuming that 50% of the kinetic end mperature of water will be C 3) 89°C of 2 moles of a gas, the change in it one during the process will be equa Joules 3) 200 Joule cular plate, all made of the same m emperature of 3000°C. Which of th 3) plate egarding reverberation time theorem is more high frequency sounds	an 0°C and 100°C marks on oefficient of apparent (4) $1.613 \times 10^{-9/0}$ C ourth of original mass of gas change (4) 76 cm of Hg ass, the same volume and the better temperature of O ₂ gas to (4) 4 : 9 ergy of the falling water gets (4) 9.8°C internal energy was found to 1 to (4) 100 Joule aterial and having the same ese will cool fastest (4) none of these
 70. 71. 72. 73. 74. 75. 	1) $3 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C There is 2 c.c of mercury at 0°C the stem is 40 cm and the diam expansion of mercury is 1) $1613/^{0}$ C 2) 0.001 A gas is filled in a vessel at a prease of 100 cm of Hg 2) 10 cm A sample of 0_2 gas and a sample and a sample of 0_2 gas and a sample same pressure. Assuming them the temperature of the H ₂ gas is 1) $1:16$ 2) $2:8$ A water fall is in 84 m high. As converted to heat, the rise in term 1) 0.098° C 2) 0.98° C During an adiabatic expansion be equal to -100 J. The workdot 1) zero 2) -100 A sphere, a cube and a thin circ mass are initially heated to a term 1) sphere 2) cube Which of the following is true refmining in the following is true refmining is less if a 2) reverberation time is less if a 2) reverberation time is less for 3) both 1 and 2 4) reverting at the following is the	in a mercury thermometer betwee eter of the base is 0.032 cm . The c $1.612/^{\circ}$ C 3) $0.0001613/^{\circ}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same mains to be perfect gases, the ratio of the s 3) 3 : 4 ssuming that 50% of the kinetic end mperature of water will be C 3) 89°C of 2 moles of a gas, the change in its one during the process will be equated Joules 3) 200 Joule cular plate, all made of the same mathematicated memperature of 3000°C. Which of that 3) plate egarding reverberation time absorption is more high frequency sounds beration time do not on volume of 100000000000000000000000000000000000	hall
 70. 71. 72. 73. 74. 75. 	1) $3 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C There is 2 c.c of mercury at 0°C the stem is 40 cm and the diam expansion of mercury is 1) $1613/^{0}$ C 2) 0.001 A gas is filled in a vessel at a prease of 100 cm of Hg 2) 10 cm A sample of 0_2 gas and a sample and a sample of 0_2 gas and a sample same pressure. Assuming them the temperature of the H ₂ gas is 1) $1:16$ 2) $2:8$ A water fall is in 84 m high. As converted to heat, the rise in term 1) 0.098° C 2) 0.98° C During an adiabatic expansion be equal to -100 J. The workdot 1) zero 2) -100 A sphere, a cube and a thin circ mass are initially heated to a term 1) sphere 2) cube Which of the following is true refmining in the following is true refmining is less if a 2) reverberation time is less if a 2) reverberation time is less for 3) both 1 and 2 4) reverting at the following is the	in a mercury thermometer betwee eter of the base is 0.032 cm. The c $612/^{0}$ C 3) $0.0001613/^{0}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same main to be perfect gases, the ratio of this 3) 3 : 4 ssuming that 50% of the kinetic end mperature of water will be C 3) 89°C of 2 moles of a gas, the change in it one during the process will be equa Joules 3) 200 Joule cular plate, all made of the same m emperature of 3000°C. Which of th 3) plate egarding reverberation time theorem is more high frequency sounds	hall
 70. 71. 72. 73. 74. 75. 76. 	1) $3 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C There is 2 c.c of mercury at 0°C the stem is 40 cm and the diam expansion of mercury is 1) $1613/^{0}$ C 2) 0.001 A gas is filled in a vessel at a prease of 2 gas and a sample of 0 gas and a sample of 0 gas and a sample same pressure. Assuming them the temperature of the H ₂ gas is 1) 1 : 16 2) 2 : 8 A water fall is in 84 m high. As converted to heat, the rise in ter 1) 0.098°C 2) 0.98°C 2) 0.98°C 10 uring an adiabatic expansion be equal to - 100J. The work do 1) zero 2) -100 A sphere, a cube and a thin circ mass are initially heated to a ter 1) sphere 2) cube Which of the following is true ref 1) reverberation time is less if a 2) reverberation time is less for 3) both 1 and 2 4) rever Explosive industrial areas will a 1) NO ₂ 2)SO ₂	in a mercury thermometer betwee eter of the base is 0.032 cm . The c $612/^{\circ}$ C 3) $0.0001613/^{\circ}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not n of Hg 3) 57 cm of Hg le of H ₂ gas both have the same ma n to be perfect gases, the ratio of th s 3) 3 : 4 ssuming that 50% of the kinetic end mperature of water will be C 3) 89°C of 2 moles of a gas, the change in it one during the process will be equa Joules 3) 200 Joule cular plate, all made of the same m emperature of 3000°C. Which of th 3) plate egarding reverberation time absorption is more high frequency sounds beration time do not on volume of 1 contain the following air pollutants	hall $6n \ 0^{\circ}C$ and $100^{\circ}C$ marks on $100^{\circ}C$ marks on $100^{\circ}C$ marks on $4) \ 1.613 \times 10^{-9/\circ}C$ burth of original mass of gas change $4) \ 76 \ cm$ of Hg ass, the same volume and the $100^{\circ}C$ model of O_2 gas to $4) \ 4 : 9$ ergy of the falling water gets $4) \ 9.8^{\circ}C$ 100° Joule 100° Could 100°
 70. 71. 72. 73. 74. 75. 76. 	1) $3 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C 2) $30 \times 10^{-5/0}$ C There is 2 c.c of mercury at 0°C the stem is 40 cm and the diam expansion of mercury is 1) $1613/^{0}$ C 2) 0.001 A gas is filled in a vessel at a prease of 2 gas and a sample of 0 gas and a sample of 0 gas and a sample same pressure. Assuming them the temperature of the H ₂ gas is 1) 1 : 16 2) 2 : 8 A water fall is in 84 m high. As converted to heat, the rise in ter 1) 0.098°C 2) 0.98°C 2) 0.98°C 10 uring an adiabatic expansion be equal to - 100J. The work do 1) zero 2) -100 A sphere, a cube and a thin circ mass are initially heated to a ter 1) sphere 2) cube Which of the following is true ref 1) reverberation time is less if a 2) reverberation time is less for 3) both 1 and 2 4) rever Explosive industrial areas will a 1) NO ₂ 2)SO ₂	in a mercury thermometer betwee eter of the base is 0.032 cm. The c $612/^{0}$ C 3) $0.0001613/^{0}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not a of Hg 3) 57 cm of Hg le of H ₂ gas both have the same mains to be perfect gases, the ratio of the s 3) 3 : 4 ssuming that 50% of the kinetic end mperature of water will be C 3) 89°C of 2 moles of a gas, the change in its one during the process will be equal Joules 3) 200 Joule cular plate, all made of the same m emperature of 3000°C. Which of th 3) plate egarding reverberation time absorption is more high frequency sounds beration time do not on volume of 1 contain the following air pollutants 3)both 1 and 2 Il exhibit car cacogenic effect on hu	hall $6n \ 0^{\circ}C$ and $100^{\circ}C$ marks on $100^{\circ}C$ marks on $100^{\circ}C$ marks on $4) \ 1.613 \times 10^{-9/\circ}C$ burth of original mass of gas change $4) \ 76 \ cm$ of Hg ass, the same volume and the $100^{\circ}C$ model of O_2 gas to $4) \ 4 : 9$ ergy of the falling water gets $4) \ 9.8^{\circ}C$ 100° Joule 100° Could 100°
 70. 71. 72. 73. 74. 75. 76. 77. 	1) $3 \times 10^{-5/0}$ C2) $30 \times 10^{-5/0}$ CThere is 2 c.c of mercury at 0°Cthe stem is 40 cm and the diamexpansion of mercury is1) 1613/°C2) 0.001A gas is filled in a vessel at a prleaks out. What will be the new1) 60 cm of Hg2) 10 cmA sample of O2 gas and a samplesame pressure. Assuming themthe temperature of the H2 gas is1) 1 : 162) 2 :8A water fall is in 84 m high. Asconverted to heat, the rise in ter1) 0.098°C2) 0.98%During an adiabatic expansionbe equal to - 100J. The workdot1) zero2) -100A sphere, a cube and a thin circmass are initially heated to a ter1) sphere2) cubeWhich of the following is true ref1) reverberation time is less if a2) reverberation time is less for3) both 1 and 24) reverExplosive industrial areas will areas will and a term1) NO22)SO2which of the following metal will1) mercury2) arsenCarbon monoxide is a	in a mercury thermometer betwee eter of the base is 0.032 cm . The c $612/^{\circ}$ C 3) $0.0001613/^{\circ}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not a of Hg 3) 57 cm of Hg le of H ₂ gas both have the same mains to be perfect gases, the ratio of the s 3) 3 : 4 ssuming that 50% of the kinetic end mperature of water will be C 3) 89°C of 2 moles of a gas, the change in it one during the process will be equated Joules 3) 200 Joule cular plate, all made of the same momenture of 3000° C. Which of the 3) plate egarding reverberation time absorption is more high frequency sounds beration time do not on volume of 10 contain the following air pollutants 3) both 1 and 2 ll exhibit car cacogenic effect on human ic 3) chromium	an 0°C and 100°C marks on oefficient of apparent 4) 1.613 × 10 ^{-9/°} C burth of original mass of gas change 4) 76 cm of Hg ass, the same volume and the ate temperature of O_2 gas to 4) 4 : 9 ergy of the falling water gets 4) 9.8°C nternal energy was found to 1 to 4) 100 Joule aterial and having the same ese will cool fastest 4) none of these hall s 4) CO ₂ uman health 4) iron
 70. 71. 72. 73. 74. 75. 76. 77. 	1) $3 \times 10^{-5/0}$ C2) $30 \times 10^{-5/0}$ CThere is 2 c.c of mercury at 0°Cthe stem is 40 cm and the diamexpansion of mercury is1) 1613/°C2) 0.001A gas is filled in a vessel at a prleaks out. What will be the new1) 60 cm of Hg2) 10 cmA sample of O2 gas and a samplesame pressure. Assuming themthe temperature of the H2 gas is1) 1 : 162) 2 :8A water fall is in 84 m high. Asconverted to heat, the rise in te1) 0.098°C2) 0.98%During an adiabatic expansionbe equal to - 100J. The workdot1) zero2) -100A sphere, a cube and a thin circmass are initially heated to a te1) sphere2) cubeWhich of the following is true re1) reverberation time is less if a2) reverberation time is less for3) both 1 and 24) reverExplosive industrial areas will of1) NO22)SO2which of the following metal will1) mercury2) arsen	in a mercury thermometer betwee eter of the base is 0.032 cm . The c $612/^{\circ}$ C 3) $0.0001613/^{\circ}$ C ressure of 76 cm of Hg. Now one-for v pressure if temperature does not a of Hg 3) 57 cm of Hg le of H ₂ gas both have the same mains to be perfect gases, the ratio of the s 3) 3 : 4 ssuming that 50% of the kinetic end mperature of water will be C 3) 89°C of 2 moles of a gas, the change in it one during the process will be equated Joules 3) 200 Joule cular plate, all made of the same momenture of 3000° C. Which of the 3) plate egarding reverberation time absorption is more high frequency sounds beration time do not on volume of 10 contain the following air pollutants 3) both 1 and 2 ll exhibit car cacogenic effect on human ic 3) chromium	an 0°C and 100°C marks on oefficient of apparent 4) 1.613 × 10 ^{-9/°} C burth of original mass of gas change 4) 76 cm of Hg ass, the same volume and the atermperature of O_2 gas to 4) 4 : 9 ergy of the falling water gets 4) 9.8°C nternal energy was found to 1 to 4) 100 Joule aterial and having the same ese will cool fastest 4) none of these hall 4) CO ₂ uman health

79.	The amount of fluoride 1)EDTA method			s determined by 3)Winkler's method	4)tur	bidity method
80.	The most abundant in 1)radon	ert gas in atmosphere 2)nitrogen	is	3)argon	4)oxy	zgen
	Which of the following 1)SO ₂	$2)O_3$	olour o	f lead paintings? 3)H ₂ S	4) no	ne
	Acid rains will cause the following effects? 1)changes the P ^H of water 2) affects plant species 3)corrosion of metals 4) all the above					
83.	Green house effect car 1)raises sea water leve			2)soil erosion		
	3)changes in frequency			4)all the above		
84			conver	ted in to the following b	v hac	teria
01.	1)methyl	2) dimethyl mercury		3) both 1 and 2	4)nor	
85.	Which of the following			·	1)1101	10
	1)CaHCO ₃	2)Mg (HCO ₃)	00100	3)both 1 and 2	4)Ca	Cl_2
86.	,		ness to	water is removed by th	,	
	1)boiling	2)Clark's process		dition of sodium carbo		4)none
87.	The chemical formula	-	,			,
	$1)Na_{2}[Na_{4}(Po_{3})]_{6}$	$2)Na(Po_3)_6$		$3)Na_2(Po_3)_6$	4)all	the above
88.	1 PPm is equal to					
	1)1 mg1 lit	$2)0.1^{0}{ m fr}$		$3)0.07^{0}$ cl	4)all	the above
89.	Zeolite can not be used	l for				
	1)highly turbid water			2)acidic water		
	3) water contains color		d Fe ²⁺	4) none		
90.	The chemical formula					
	1)Fe So ₄ $7H_{20}$	$2)\mathrm{Fe}_2\mathrm{So}_4$		3)Fecl ₃	4) no	ne
91.	In swimming pools dis		by the			
0.0	1)Cl ₂	2)UV radiation	. 1	3)ozone	4)nor	ne
92.	The process of coating		metal		A) 1	. 1
0.9	1)tinning	2) anodisation		3)sherardising	4) ele	ectroplating
93.	Rusting of iron is an e	-		3) not a chemical react		1) nono
04	1) oxidation During wet corrosion	2) reduction		5) not a chemical react.	1011	4) none
94.	1)the cathodic area un	dargaas corresion		2)anodic are undergoes	oorro	sion
	3)no corrosion takes pl	6) hoth	anode and cathode und		
95	Current is generated i				ergoer	011051011
00	1) $cu^{2+} + zn \rightarrow cu + zn^{2+}$			3) $zn^2 + cu \rightarrow zn^{2+} + cu^2$	+4) no	ne
96.	In an electrolytic cell,	•		,	1) 110	
00.	1) reduction	-		ion and reduction	4) an	odisation
97.	Rusting of iron is catal	· · · · · · · · · · · · · · · · · · ·	omaat	ion and roudoron	1) uii	ouisation
	1) H ⁺	2)H ⁻		$3)O_2$	4)all	the above
98.	The rate of corrosion in	<i>,</i>	contair		,	
	1) impurities	2) stressed portions		3)cracks	4)all	the above
99.	The plastic that is use		f unbr	·	,	
	1)rubber	2)PVC		3)urea formaldehyde re	esin	4) isoprene
100	. Highly vulcanized rub	ber is called		-		_
	1) ebonite	2) buna –S		3)isoprene	4)fibi	re