1. Sun releases energy	by the process of		
A. nuclear fusion	B. nuclear disintegration	C. nuclear fission	D. spontaneous combustion
2. The number of ator A. 1, 2 and 4 respectiv C. 1, 4 and 2 respectiv	ns per unit cell in a <i>sc, bc</i> vely vely	<i>c</i> , and <i>fcc</i> are B. 8, 6 and 10 respecti D. 2, 4 and 1 respectiv	vely ely
3. In a diode, at satura	tion current, the plate res	istance is	
A. zero	B. constant and finite	C. infinite	D. variable but finite
4. An <i>n</i>-type and a <i>p</i>-tA. sodium and magneC. indium and sodium	ype silicon semi-conduct sium respectively respectively	or can be obtained by do B. phosphorous and bo D. boron and arsenic re	ping pure silicon with pron respectively espectively
5. When the plate volt voltage to 200 V, the	tage of a triode is 150 V, a cut off voltage can be	its cut off voltage is -5 V	7. On increasing the plate
A4.5V	B5.0V	C. + 2.3 V	D6.06 V
6. In a diode vacuum to introduced between the then become	tube, the plate current is 5 the plate and cathode and a	5 mA when the plate volt voltage of -2 V is applied	tage is 160 V. A grid is ed to it. The plate current
A. 20 mA	B. 10 mA	C. 4mA	D. 7.5mA
7. A long spring is strapotential energy is V. by 10cm, its potential A. V/25 B. V/5	etched by 2cm. Its If the spring is stretched energy would be C. 5V D. 25V		
8. The length of a rod length. The speed of t	as measured by an obser he observer with respect	ver moving with respect to rod is	to it is half of its proper
A. $3/2 c \text{ ms}^{-1}$	B. $c/2 \text{ ms}^{-1}$	C. $(\sqrt{3})/2 c \text{ ms}^{-1}$	D. $1/\sqrt{2} c \text{ ms}^{-1}$
9. A + μ -meson with respect to an earth obs	a proper half-life of 1.8 x server. The half-life of thi	$\times 10^{-6}$ s is moving with a is μ -meson according to	speed of 0.9 c with an observer sitting on it
A. $1.8 \ge 10^{-6} $ s	B. 1.8 x √0.19 x 10 ⁻⁶ s	C. 1.8/√0.19 x 10 ⁻⁶ s	D. 1.8 x 0.19 x 10 ⁶ s
10. The mass per nucl A. l/l6th mass per nucl B. slightly greater that C. the same as mass p D. slightly smaller tha 11. Consider the follo	eon in an ordinary hydrog eleon in an oxygen atom n the mass per nucleon in er nucleon in an oxygen a on the mass per nucleon in wing nuclear reaction	gen atom is an oxygen atom atom n an oxygen atom	

 $_{2}\text{He}^{4} + _{Z}X^{A} = _{Z+2}Y^{A+3} + W$ What particle does *W* denote ?

A. electron	B. positron	C. proton	D. neutron		
12. The function of graA. to produce neutronsB. to slow down the neutrons	aphite and the control is and to shield the reac eutrons and to absorb t	rods in a nuclear rea tor he excess neutrons	actor are respectively		
C. to absorb the excess	s neutrons and to shiel	d the reactor respec	tively		
D. to absorb neutrons	and to reduce the energy	gy of the neutrons r	espectively		
13. In the first observe could be represented a ${}_{7}N^{14} + {}_{2}He^4 = X + {}_{1}H^1$ The element in this rea	ed nuclear reaction, 7N s action is	¹⁴ was bombarded v	with α -particles. The reaction		
A. ${}_{8}O^{17}$	B. ${}_{8}F^{17}$	C. $_{8}N^{17}$	D. $_{8}Ne^{17}$		
14. In a Bucherer's exp value determined by J.	periment, the specific of J. Thomson. The spee	charge of some β pa d of these β particle	articles is found to be 1/4th of the es is		
A. √ 5/4 c	B. √ 15/4 c	C. 1/4 c	D. c		
15. When the mass is r fixed point, its angular along	otating in a plane about momentum is directed	ut a d			
A. the radius C. line at an angle of	B. the tangent to orb	pit			
45° to the plane of rotation	D. the axis of rotation	on			
16. A photo-cell with a distance 25 cm. When photo-cell	a constant p.d. of V vo the source is moved to	lts across it, is illum o a distance of 1 m,	inated by a point source from a the electrons emitted by the		
A. carry 1/4th their pre-	evious energy	B. are 1/16th as	B. are 1/16th as numerous as before		

C. are 1/4th as numerous as before

B. are 1/16th as numerous as before D. carry 1/4th their previous momentum

17. A convex lens of focal length 40 cm is in contact with a concave lens of focal length 25 cm. The power of combination is

A1.5 <i>D</i> B6.5 <i>D</i> C. 1.5 <i>D</i> D. 6	6.5 D
--	-------

18. A prism splits a beam of white light into its seven constituent colours. This is so becauseA. phase of different colour is differentC. energy of different colours is differentD. velocity of different colours is different

19. A prism has a refracting angle of 60° when a ray of light is incident on its face at 45° , it suffers minimum deviation. The angle of minimum deviation is

A. 30° B. 60° C. 45° D. 90° 20. A car driver sees an image of a bus in his driving mirror, which has a radius of curvature of 4 m. The bus which is 10 m long, is parallel

to and following the car in front of the bus 18 m from the mirror. The apparent length of the bus as seen in the mirror is

A. 700 mm B. 670 mm C. 800 cm D. 800 mm

21. A single slit of width d is placed in the path of a beam of wavelength λ . The angular width of principal maximum obtained is

C. $2\lambda/d$ A. d/λ **B**. λ/d D. $2d/\lambda$

22. A closed tube, partly filled with a liquid & set horizontal, is rotated about a vertical axis passing through its centre. In the process, the moment of inertia of the system about its axis would

A. increase always	B. decrease always	
C romain constant	D. increase if tube is less than half filled, decrease otherwise	
C. Temain constant		

23. In an A.C. circuit the instantaneous current through and voltage across a capacitor are represented as I = I₀ sin ($\omega t + \pi/4$) and v = V₀ sin ($\omega t + \pi/8$) respectively. The current leads the voltage by

B. $3\pi/8$ C. $\pi/2$ A. $\pi/4$ D. $\pi/8$

24. A transformer having 2100 turns in the primary and 4200 turns in the secondary has an a.c. source of 120 V, 10 A connected to its primary. Then the secondary voltage and current are A. 240 V and 5 A B. 120 V and 10 A C. 240 V and 10 A D. 120 V and 20 A 25. When a magnet falls through a metal ring, acceleration through the metal ring during the free falls is

A. less than g throughout its fall

B. less than g when it is above the ring and more than g

when it is below the ring

C. more than g throughout its fall

D. more than g when it is above the ring and less than g

when it is below the ring

26. A copper rod is suspended in a non-homogeneous magnetic field region. The rod when in equilibrium, will then align itself

A. in the region where the magnetic field is strongest

B. in the direction in which it was originally suspended

C. in the region where the magnetic field is weakest and parallel to the direction of the magnetic field there

D. none of these

27. The substance which	ch shows permanent	magnetism is called	
A. anti-ferromagnetic	B. paramagnetic	C. diamagnetic	D. ferromagnetic

28. A magnetic substance is heated to 800 K and then cool down slowly to 300 K, then it B. retains its magnetism below curie points A. retains its magnetism

C. does not retain magnetism D. none of these 29. Two heater wires of equal length are first connected in series and then in parallel. The ratio of heat produced in the two cases is A. 2:1 B. 1:2 C. 4:1 D. 1:4

30. A galvanometer with a coil resistance of 100Ω gives a full-scale deflection when a current of 1 mA is passed through it. The resistance of the shunt needed to convert this galvanometer into an ammeter 5 of range 10 A is nearly

A. 0.01Ω B. 0.001Ω C. 0.1Ω D. 0.099Ω

31. The resistance of a 50 cm long wire is 10Ω . The wire is stretched to uniform wire of length 100 cm. The resistance now will be

A. 15Ω B. 30Ω C. 20Ω D. 40Ω

32. In the given circuit, the currents i, j, and k are in the ratio

B. 3:2:1

D. 3:1:2

C. 2:1:3

A. 1:2:3

33. A conducting sphere of radius R is given a charge Q. Consider three points B at the surface, A at centre and C at a distance R/2 from the center. The electric potential at these points are such that

A. $V_A = V_B = V_C$ B. $V_A = V_B \neq V_C$ C. $V_A \neq V_B \neq V_C$ D. $V_A \neq V_B = V_C$ 34. The mass of a proton is 1847 times that of an electron.

An electron and a proton are projected into a uniform

electric field in a direction of right angles to the direction of

the field with the same initial kinetic energy. Then

A. both the trajectories will be equally curved

B. the proton trajectory will be less curved than the electron trajectory

C. the electron trajectory will be less curved than the proton trajectory

D. the relative curving of the trajectories will be dependent on the value of initial kinetic energy

35. The wavelength of maximum radiation from the moon is 14×10^{-6} m. If the value of the constant in Wein's displacement law is 0.00293 mK, the surface temperature of moon is A. 207 K B. 146 K C. 227 K D. 103.5 K 36. A given mass of gas is subjected to an external pressure of 0.5 x 10^{10} N/m². If $K = 10^{10}$ Nm⁻², the ratio of the density before and after applying the pressure is A. 1 : 1 B. 1 : 2 C. 2 : 1 D. 1 : 4

37. The heat reservoir of an ideal Carnot engine is at 800 K and its sink is at 400 K. The amount of heat taken in it in one second to produce useful mechanical work at the rate of 750 K is

A 55% B 60% C 40% D 45%	
D . 10/0 D . 10/0	
39. A wire of length 1m increases in length by 10^{-4} m when heated throug The coefficient of volume expansion of the wire is	gh 10^2 degree celsius.
A. 2×10^{-6} B. 1×10^{-6} C. 3×10^{-6}	D. 4 x 10 ⁻⁶
40. The pitch of a sound wave is related to its	
A. frequency B. amplitude C. velocity	D. beats
41. A mass m is hung to a string. After some time, it was observed that n its initial position; this is due to	nass <i>m</i> moves up from
A. decrease in temperatureB. increase in temperatureC. the statement is wrong	D. change in humidity
42. A light spring of force constant 8 Nm ⁻¹ is cut into two equal halves as in parallel; the equivalent force constant of the system is	nd the two are connected
A. 16 Nm^{-1} B. 32 Nm^{-1} C. 8 Nm^{-1}	D. 24 Nm ⁻¹
43. A light spring of constant k is cut into two equal parts. The spring con A. k B. 2k C. k/2 44. A wave equation which gives the displacement along y- direction is given by $y = 10^{-4} \sin (60t + x)$ where x and y are in meters and t is time in seconds. This represents a wave A. travelling with a velocity of 300 ms ⁻¹ in the -ve x- direction B. of wavelength π meters C. of frequency $30/\pi$ hertz D. of amplitude 10^4 meter travelling along the positive x- direction 45. The periodic times T of a simple pendulum are observed for different log T against log 1 is plotted, the slope of the graph is A. 2 B. $1/2$ C. $\sqrt{2}$ D. $1/\sqrt{2}$	nstant of each part is D. 4 <i>k</i> t length <i>l</i> . If a graph of
46. Ordinarily, the value of coefficient of restitution varies from A. 0 to 1 B. 0 to 0.5 C. -1 to $+1$	D0.5 to +0.5

47. *In* a gravitational field, if a body is bound with earth, then total mechanical energy it has is A. *a* +ve value B. a zero value C. a -ve value D. K.E. less than P.E.

48. The mass of a planet is twice the mass of earth and diameter of the planet is thrice the diameter of the earth, then the acceleration due to gravity on the planet's surface is

A. g/2 B. 2g C. 2g/9 D. $3g/\sqrt{2}$

49. A stationary bomb explodes into two parts of masses 3 kg and 1 kg. The total K.E. of the two parts after explosion is 2400J. The K.E. of the smaller part is
A 600 J B 1800 J C 1200 J D 2160 J
50. In a perfectly elastic collision
A. both momentum and K.E. are conserved
C. only K.E. is conserved
D. neither K.E. nor momentum is conserved

51. A bullet of mass 7g is fired at a velocity of 900 ms⁻¹ from a rifle of mass 3.5 kg. What is the recoil velocity of the rifle?

A 0.9 ms⁻¹ B 180 ms⁻¹ C 900 ms⁻¹ D 1.8 ms⁻¹

52. In the arrangement shown in the figure, P and Q are in inflexible strings moving downward with uniform speed U, pulleys A and B are fixed. Mass M move upwards with a speed of

A. 2 U cos θ B. U/cos θ

C. $2U/\cos\theta$ D. U cos θ

53. The figure shows the angular velocity-time graph of a flywheel. The angle, in radians, through which the flywheel turns during 25 sec is

A. 75 B 480 C. 615 D. 750 rad/s

54. A ball is dropped from the top of a building 100m high. At the same instant another ball is thrown upwards with a velocity of 40 ms^{-1} from the bottom of the building. The two balls will meet after

A. 5 sec B. 2.5 sec C. 2 sec D. 3 sec

55. A train accelerating uniformly from rest attains a maximum speed of 40 ms⁻¹ in 20 seconds. It travels at this speed for 20 seconds and is brought to rest with uniform retardation in further 40 seconds. What is the average velocity during this period?

ms^{-1} C. 25 ms^{-1} D. 30 ms^{-1}
ms ⁻¹ C. 25 ms ⁻¹ D. 30 m

56. Two bodies are held and separated by 19.8m vertically one above the other. They are released simultaneously to fall freely under gravity. After 2 seconds, the relative distance between them is:

A. 14.9m	la starte with	B. 19.6m	$af 2 m s^{-1} and$	C. 19.8m	D. 39.2m
moves in a ms^{-2} . The ti	straight line me at which	with a retard the particle	lation of 0.1 is 1.5 m far	I	
from the sta	rting point i	s			
A. 10 sec	B. 20 sec	C. 30 sec	D. 40 sec		
58. The uni	ts of current	in C.G.S. sy	stem is		
A. 1 A		B. 1/10 A		C. 1/100 A	D. 1/1000 A
59. The uni	ts of electric	field are			2
A. volt/met	re	B. volt ² /me	tre	C. volt x metre	D. metre ²
60. The uni	t of moment	of inertia is			
A. kg-m		B. $kg-m^2$		C. kg/m	D. kg/m^2
61. Fischer manufactur	Tropsch pro e of	cess is used	for the		
A.	B.				
synthetic petrol	thermosettin plastics	ngC. ethanol	D. benzene	e	
62. Brown	ring test is u	sed to detect			
A. iodide		B. nitrate		C. iron	D. bromide
63. Carboh	ydrates are u	sed by body	mainly		
A. for obtai	ning vitamir	ıs		B. as source of energy	
C. for all its	s developme	ntal needs		D. for building muscles	
64. The pol	ymer contaii	ning an amid	le group is		
A. Nylon		B. Polythen	e	C. Polystyrene	D. Terylene
65. The org	anic compou	and used as a	antiknock ag	ent in petroleum is	
A. $(C_2H_5)_4H$	2b	B. TNT		C. CH ₃ MgBr	D. $(C_2H_5)_2Hg$
66. Carbyl	amine test is 2°	used in the o	detection of	D	
A. aliphatic	1° amine			B. aromatic 1° amine D both aliphatic and an	omatic 1 ^o amines
67. Aromat cold HNO ₂	ic primary an gives	mine when t	reated with		
A. benzyl alcohol	B. nitro benzene	C. benzene	D. diazonium salt		

68. Which of petroleum	n corresponds to kerosene	e oil?	
A. C ₁₅ - C ₁₈	B. C ₁₀ - C ₁₂	C. C ₅ - C ₉	D. C ₁ - C ₄
69. Aldehydes and keto	ones can be distinguished	by	
A. bromoform	B. solubility in water	C. Tollen's test	D. Mollich test
70. Aspirin is obtained A. phenol	by the reaction of CH ₃ CO B. benzoic Acid	OCl with C. benzaldehyde	D. salicylic acid
		-	-
71. Correct order of the A. $I > I^- > I^+$	size of iodine species is B. $I^- > I > I^+$	C. $I^+ > I > I^-$	D. $I^- > I^+ > I$
72. Nitrolin is a name g	iven to		
A. $CaCN_2 + C$	B. Ca ₃ (PO ₄) ₂	C. Ca(CN) ₂	D. Ca(NO ₃) ₂
73. The pair of compou	nd, which cannot exit to	gether, is	
A. NaHCO ₃ and NaOH	B. Na_2CO_3 and $NaOH$	C. Na ₂ CO ₃ and NaHCl ₃	3 D. NaHCO ₃ and NaCl
74 One of the constitute	ants of the garman silver	ic	
A. Ag	B. Cu	C. Mg	D. Al
C		C	
75. Which compound is	s optically active?		
A. 4-chloro, l-hydroxy	butane	B. 3° butyl alcohol	
C. Secondary butyr ann	lile	D. II-butyl alcohol	
76. Plumbo solvancy in	nplies dissolution of lead	in	
A. bases	B. acids	C. ordinary water	D. CuSO ₄ sol
77. Indigo dye belongs	to		
A. Vat dye	B. Mordant dye	C. Direct dye	D. Ingrain dye
78. Dipole moment is s	hown by		
A. 1, 4-dichloro benzen	ie	B. cis, 1, 2-dichloro eth	ane
C. trans, -1, 2-dichloro,	2-pentene	D. trans, -1, 2-dichloro	ether
79. When acetylene is r	bassed through H ₂ SO ₄ co	ntaining HgSO ₄ , it gives	
A. ethyl alcohol	B. acetic Acid	C. acetaldehyde	D. ethylene
80. The compound, whi	ich does not leave any	•	•
residue on heating, is			
A. NaNO ₃ B. NH ₄ NO ₃	$_3$ C. CuSO ₄ D. AgNO ₃		
81. Which of the follow	ving alloys contain only (Cu and Zn?	
A. Bronze	B. Brass	C. Gun metal	D. Bell metal

82. Gold number is a measure of theA. stability of a colloidal systemC. coagulating power of colloids		B. efficiency of a protective colloidsD. size of the colloidal particle		
83. Whose name is not a A. Prout's	associated with the devel B. Newlands	lopment of Periodic Table? C. Rutherford D. Loother Mey		
84. Polarisibility of hali A. F ⁻ , I ⁻ , Br ⁻ , Cl ⁻	de ions increases in the o B. Cl ⁻ , Br ⁻ , I ⁻ , F ⁻	order C. I ⁻ , Br ⁻ , Cl ⁻ , F ⁻	D. F ⁻ , Cl ⁻ , Br ⁻ , I ⁻	
85. Acetylene molecule	s contain			
A. 5σ bond	B. 4σ bond and 1π bond	C. 3σ and 2π	D. 3σ and 3π	
 86. The oxidation numb A 2.5 87. In ideal gas equation A. mole- B. atm/K litre/mole 88. An element X which 	ther of S in $NO_2S_4O_6$ is B. 2.5 h, the dimension of R is C. litre- D. erg/K atm/K/mole	C 10	D. + 10 tronic structure $s^2 p^1$	
What are the formula ar	nd acid-base character of	its oxides?	tronic structure s p .	
A. XO_3 , basic	B. X_2O_3 , basic	C. X_2O_3 , acidic	D. XO ₂ , acidic	
89. The uncertainty in the uncertainty in its velocities $4 + 5 + 2 \times 10^{-28} \text{m/sac}$	ty. B $\frac{2}{3}$ 0 x 10 ⁻²⁸ m/sec	bullet of mass 10 gm is 1 $C = 5.2 \times 10^{-22} \text{m/sac}$	0^{-5} m. Calculate the	
A. 5.2 x 10 m/sec		C. 5.2 x 10 III/sec	D. 5 X 10 III/sec	
90. Which is not parama A. O_2	B. O_2^+	C. O_2^{2-}	$D. O_2^-$	
91. What is wrongly stateA. It is the representation reduction potentialB. It does not compare to C. It compares relative stateD. H₂ is centrally placed	ted about electrochemica on of element in order of the relative reactivity of strengths of oxidising ag d element	al series? increasing or decreasing metals ents	standard electrode	
92. Which pairs of ions	are isoelectronic?			
A. F ⁻ and Cl ⁻ 93. The ionization energy of O ₂ because	B. F ⁻ and O ⁻ gy of N ₂ is more than that	C. Na ⁺ and K ⁺ t	D. Na ⁺ and Mg ⁺²	
A. of the extra stability of half filled p-orbitals in N ₂	B. of the smaller size of N_2	2		
C. the former contains less number of electrons	D. the former is less electronegative			

94. Stainless steel is an	n alloy of iron with			
A. 8% Cr, 5% Mn	B. 10% Ni, 2% Mn,	C. 2%Cr, 3%C	D. 12%Cr, 1%N	
95. Highest pH (14) is	given by			
A. 0.1 M H ₂ SO ₄	B. 0.1 M NaOH	C. 1 N NaOH	D. 1 N HCl	
96. N ₂ atom has 3 unp	aired electrons, because	of		
A. Hund's Rule	B. Uncertaintity Principle	C. Pauli's Exclusion Principle	D. Aufbau's Rule	
97. A group of atoms	can function as a ligand o	only when		
A. it is a small molecu	lle	B. it has an unshared e	electron pair	
C. it is a negatively ch	arged ion	D. it is positively char	ged ion	
98. When potassium d	ichromate crystals are he	eated with conc. HCl,		
A. O_2 is evolved		B. Chromyl chloride v	apours are evolved	
C. Cl_2 is evolved		D. No reaction takes p	lace	
99. Aluminium is more	e reactive than Fe. But A			
is less easily conoded	B Fe forms both mon	0		
A. Al is noble metal	and divalent ions	0		
C. Al forms a protectiv	ve D. Fe undergoes			
oxide layer	reaction easily with H ₂ O			
100. The ratio of C_v/C	p for inert gas is			
A. 1.33	B. 1.66	C. 2.13	D. 1.99	
101. The pH of blood	is			
A. less than 6 B		B. greater than 7 and less than 6		
C. greater than 8 and 1	ess than 9	D. greater than 10		
102. Sodium carbonat	e is manufactured by Sol	vay process. The recycle	ed products are	
A. CO ₂ and NH ₃	B. CO ₂ and NH ₄ Cl	C. NaCl	D. CaC1 ₂ and CaO	
103. Among the follow	wing which is the weakes	st base?		
A. NaOH	B. Ca(OH) ₂	C. KOH	D. $Zn(OH)_2$	
104. The set of quantu	m number not applicable	e for an electron in an ato	om is	
A. $n = 1, l = 1, m = 1,$	S = +1/2	B. $n = 1, l = 0, m = 0,$	S = +1/2	
C. $n = 1, l = 0, m = 0,$	S = -1/2	D. $n = 2, l = 0, m = 0,$	S = +1/2	
105. The conversion o	$f A \rightarrow B$ follows second			
order kinetics, tripling	the concentration of A			
factor of	of formation of B by a			

C. 1/2 A. 1/4 **B**. 2 D. 9 106. Amino group in the benzene group can be protected by B. salfoniation A. arylation C. chlorination D. acetylation 107. The light radiation with discrete quantities of energy is called A. electron B. photon C. positron D. meson 108. How many primary amines are possible for the formula $C_4H_{11}N$? B. 2 C. 3 A. 1 D. 4 109. Base catalysed aldol condensation occurs with A. propanaldehyde B. benzaldehyde C. 2, 2-dimethyl propionaldehyde D. none of the above 110. A sample of chloroform before being used as an anaesthetic is tested by A. Fehling's solution B. ammonical cuprous chloride C. silver nitrate solution D. silver nitrate solution after boiling with alcoholic potassium hydroxide 111. 1-chlorobutane on reaction with alcoholic potash gives A. 1-butene B. 1-C. 2-butene D. 2butanol butanol 112. The halogen which is most reactive in the halogenation of alkanes under sunlight is C. iodine D. fluorine A. chlorine B. bromine 113. The highest b.p. is expected for C. n-octane A. iso octane B. only ketone D. n-butane 114. The bond between carbon atom (1) and carbon atom (2) in compound N= C-CH=CH₂ involves the hybrids as B. sp^3 and spC. sp and sp^2 A. sp^3 and sp^2 D. sp and sp 115. If two compounds have the same empirical formula but different molecular formula, they must have A. different percentage composition B. different molecular weight C. same viscosity D. same vapour density 116. Optical isomerism is shown by A. Butanol-1 B. Butanol-2 C. Butene-1 D. Butene-2 117. The ion that cannot be precipitated by both HCl and H_2S is D. Sn²⁺ A. Pb^{2+} B. Cu^+ C. Ag^+ 118. The aqueous solution of the following salts will be coloured in case of A. B. LiNO₃ C. D. ArCl₃

 $Zn(NO_3)_2$ $CO(NO_3)_2$

119. The highest degree of paramagnetism per mole of the compound at 25°C will be shown by A. MnSO₄.7H₂O B. COCl₂.6H₂O C. FeCl₃.4H₂O D. NiCl₂.6H₂O 120. Bromine can be liberated from KBr solution by the action of C. sodium chloride A. iodine solution B. chlorine water D. potassium iodide 121. If A and B be any two sets, then $(A \cup B)'$ is equal to C. A' \cap B' A. $A \cap B$ B. $A \cup B$ D. A' \cup B' 122. If $A = \{1, 2, 3, 4\}$ then which of the following are functions from A to itself? A. $f_4 = \{ (x, y) : x + y = 5 \}$ B. $f_3 = \{ (x, y) : y < x \}$ C. $f_2 = \{ (x, y) : x + y > 4 \}$ D. $f_1 = \{ (x, y) : y = x + 1 \}$ 123. The solution of $6 + x - x^2 > 0$ is B. -2 < x < 3A. -1 < x < 2C. -2 < x < -1D. none of the above 1 - iz **124.** If z = x + iy and , then $|\omega| = 1$ implies that in the complex ω = plane, z - i A. z lies on the unit circle B. z lies on the imaginary axis C. z lies on the real axis D. none of the above 125. The first term of a G.P., whose second term is 2 and sum to infinity is 8, will be A. 6 **B**. 3 C. 4 D. 1 126. Equation of circle having diameters 2x - 3y = 5 and 3x - 4y = 7, and radius 8 is A. $x^{2} + y^{2} - 2x + 2y - 62$ B. $x^{2} + y^{2} + 2x + 2y - 2$ = 0= 0C. $x^2 + y^2 + 2x - 2y +$ D. none of the above 62 = 0127. A and B are points in the plane such that PA/PB = K (constant) for all P on a circle. The value of K cannot be equal to A. -1/2 **B**. 1/2 C. -1 D. 1 128. If the centroid and circumcentre of a triangle are (3, 3) and (6, 2) respectively, then the orthocentre is

A. (-3, 5) B. (-3, 1) C. (3, -1) D. (9, 5)

129. If sin x + cos x = 1/5, $0 \le x \le \pi$, then tan x is equal to

A 4/3 or -3/4	B. 4/3		C. 4/5	D. none of the above
130. If r ₁ , r ₂ , r ₃ in a	triangle be in H	I.P., then th	e sides are in	
A. H.P.	B. A.P.		C. G.P.	D. none of the above
131. $\cot \theta = \sin 2\theta$ ($\theta \neq n\pi$, n integ	ger) if θ equ	als	
A. 45° and 90°	B. 45° and	160°	C. 90° only	D. 45°
132.				
If a				
= (b				
- c)	sin	=		
sec				
θ,				
then				
b - c	2			
A. $\cos \theta$ B. $\cot \theta$	C. tan θ	D. sin θ		

133. The average of n numbers x_1 , x_2 , x_3 ,, x_n is M. If x_n is replaced by x', then new average is

 $\begin{array}{ccc} M \cdot x_n + x' & & & \\ A. & & & \\ & n & & \\ & n & & n \\ \hline & n & & \\ C. & & \\ & n & & \\ & n & & \\ \end{array} \\ \begin{array}{c} (n-1)M + x' & \\ & n & \\ & n & \\ & & \\ D. \ M \cdot x_n + x' & \\ & \\ & n & \\ \end{array}$

(**x**) =

134. In an entrance test, there are multiple choice questions. There are four possible answers to each question of which one is correct. The probability that a student knows the answer to a question is 90%. If he gets the correct answer to a question, then the probability that he was guessing is

A. 1/9 B. 36/37 C. 1/37 D. 47/40 135. The value of $\tan \left[\cos^{-1}(4/5) + \tan^{-1}(2/3)\right]$ is D. none of C. 7/16 A. 16/7 **B.** 6/17 the above 136. Lt x - [x] , where k is an integer, is equal to $x \rightarrow k$ -A. -1 **B**. 1 C. 0 D. 2 tan x [log (x - 2)] is discontinuous are given 137. The values of x where the function f

by

C. $(-\infty, 2) \cup \{3, 11\}$ C. $(-\infty, 2) \cup \{2n\pi, n\}$	t, $n \ge 1$ } $\pi/2, n = 1$ }	x ² - 4 x + 3 B. $(-\infty, 2)$ D. none of the abo	ve
d ² x 138. If y = x	- is		
$+ e^{x}$,	15		
then dy ²	e ^x		
A. $\frac{(1+e^x)^2}{e^x}$	$B = \frac{(1 + e^x)^2}{(1 + e^x)^2}$		
$(1 + e^x)^3$	D. e ^x		
139. At x = $5\pi/6$, f(A. zero	$f(x) = 2 \sin 3x + 3 \cos 3x i$ B. maximum	s C. minimum	D. none of the above
140. If a < 0, the fu	nction $(e^{ax} + e^{-ax})$ is a striv	ctly monotonically deci	reasing function for values of
x is given by			
A. x < 1	B . $x > 1$	C. $x < 0$	D. $x > 0$
141. $\int [\sin(\log x) +$	cos (log x)] dx is equal to	0	
A. $\sin(\log x) + \cos(\log x)$	$(\log x) + c$	B. $\sin(\log x) + c$	
C. $x \cos(\log x) + c$		D. none of the abo	ve
X /2 cos			
$ x = \frac{ x }{1/2} \cos \frac{1}{\pi/2} x$ $\frac{1/2}{-1/2} dx $ is			
$ x = \frac{ x }{142. \int_{-1/2}^{1/2} \frac{ x }{\pi/2} x}{\frac{\pi/2}{142. \int_{-1/2}^{1/2} \frac{ x }{\pi/2} x}{142. \int_{-1/2}^{1/2} \frac{ x }{\pi/2} x}$	C. $(\pi\sqrt{2} + D)$. none $4\sqrt{2} - 8/\pi^2$ the above	of ve	
$ x = \frac{ x }{ x } = \frac{ x }{ $	C. $(\pi\sqrt{2} + D)$ none $4\sqrt{2} - 8/\pi^2$ the above ferential equation xdy - y	of we ydx = 0 represents	
$ x = \frac{ x }{1/2} \cos \frac{ x }{\pi/2} \cos \frac{ x }{1/2} -\frac{1}{2} dx $ $ x = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2}$ $ x = \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos \frac{ x }{\pi/2} + \frac{1}{2} \cos \frac{ x }{\pi/2} = \frac{1}{2} \cos $	C. $(\pi\sqrt{2} + D)$ none $4\sqrt{2} - 8/\pi^2$ the above Ferential equation xdy - y vertex is at origin	of ve vdx = 0 represents B. circle whose cer	ntre is at origin
142. $\int \frac{ \mathbf{x} }{\pi/2} \cos \frac{ \mathbf{x} }{\pi/2} \mathbf{x}$ 142. $\int \frac{\pi}{2} \mathbf{x}$ 142. $\int \frac{\pi}{2} \mathbf{x}$ 143. Solution of diff A. parabola whose C. a rectangular hyperbola whose for the second secon	C. $(\pi\sqrt{2} + D)$ none $4\sqrt{2} - 8/\pi^2$ the above ferential equation xdy - y vertex is at origin perbola	of ve vdx = 0 represents B. circle whose cer D. straight line pas	ntre is at origin sing through origin
$ x = \frac{ x }{\pi/2} \cos \frac{ x }{\pi/2} \cos \frac{ x }{\pi/2} - \frac{ x }{\pi/2} \cos \frac{ x }{\pi/2} = \frac{ x }{\pi$	C. $(\pi\sqrt{2} + D)$ none $4\sqrt{2} - 8/\pi^2$ the above Forential equation xdy - you wanted you wanted the second secon	of ve vdx = 0 represents B. circle whose cer D. straight line pas un extreme value at a po	ntre is at origin sing through origin pint where f '(x) is
142. $\int_{-1/2}^{ x } \frac{ x }{ dx } \frac{ x }{ dx }$ 142. $\int_{-1/2}^{1/2} \frac{ dx }{ dx } \frac{ x }{ dx }$ 143. Solution of diff A. parabola whose C. a rectangular hypothese C. a rectangular hypothese function for the f	C. $(\pi\sqrt{2} + D. \text{ none} 4\sqrt{2} - 8)/\pi^2$ the above ferential equation xdy - y vertex is at origin perbola - f(-x), then h(x) has got a B. odd function	of ve vdx = 0 represents B. circle whose cer D. straight line pas an extreme value at a po C. zero	ntre is at origin sing through origin pint where f '(x) is D. none of the above
$ x = \frac{ x }{\pi/2} \cos \frac{ x }{\pi/2} \cos \frac{ x }{\pi/2} - \frac{ x }{\pi/2} - \frac{ x }{\pi/2} - \frac{ x }{\pi/2} + \frac{ x }{\pi/2} - \frac{ x }{\pi$	C. $(\pi\sqrt{2} + D. \text{ none} 4\sqrt{2} - 8)/\pi^2$ the above ferential equation xdy - y vertex is at origin perbola - f(-x), then h(x) has got a B. odd function	of ve vdx = 0 represents B. circle whose cer D. straight line pas an extreme value at a po C. zero expansion of $(1 + 4x)^8$ i	ntre is at origin sing through origin pint where f '(x) is D. none of the above

146. Roots of $x^2 + k = 0$, k < 0 are A. real and equal B. rational C. real and distinct D. equal 147. In a quadratic equation with leading coefficient 1, a student reads the coefficient 16 of x strongly as 19 and obtains the roots as -15 and - 4. The correct roots are A. 8, 8 C. - 6, - 10i D. - 8, - 8 B. 6, 10 148. The value of m for which the equation $x^2 - mx^2 + 3x - 2 = 0$ has two roots equal in magnitude but opposite in sign is D. 1/2 A. 4/5 B. 3/4 C. 2/3 149. If 1/(b-a) + 1/(b-c) = 1/a + 1/c, then a, b, c are in A. H.P. B. G.P. C. A.P. D. none of the above 150. If every term in G.P. is positive and also every term in the sum of two proceeding terms, then the common ratio of the G.P. is C. $(\sqrt{5} - 1)/2$ A. $(1 - \sqrt{5})/2$ B. $(\sqrt{5} + 1)/2$ D. 1 151. If $y = -(x^3 + x^6/2 + x^9/3 + \dots)$, then $\mathbf{C} \mathbf{x}^3 = \mathbf{e}^{\mathbf{y}}$ A. $x^3 = 1 - e^y$ B. $x^3 = \log(1 + y)$ D. $x^3 = 1 + e^y$ 152. Vinay, Manish, Rahul, and Sumit have to give speeches in a class. The teacher can arrange the order of their presentation in D. 256 A. 12 ways B. 24 ways C. 4 ways ways 153. There are n (>2) points in each of two parallel lines. Every point on one line is joined to every point on the other line by a line segment drawn within the lines. The number of points (between the lines) in which these segments intersect is

A. ${}^{n}C_{2} \times {}^{n}C_{2}$ B. ${}^{2n}C_{2} - 2({}^{n}C_{2})$ C. ${}^{2n}C_{2} - 2({}^{n}C_{1}) + 2$ D. none of the above

154. The number of ways in which 7 persons can sit around a table so that all shall not have the same neighbours in any two arrangements is

A. 360 B. 720 C. 270 D. 180

155. The length of sub normal to the parabola $y^2 = 4ax$ at any point is equal to A. $a\sqrt{2}$ B. $2\sqrt{2}a$ C. $a/\sqrt{2}$ D. 2a

 156. The expansion of $(8 - 3x)^{3/2}$ in terms of power of x is valid only if

 A. x > 8/3 B. |x| < 8/3 C. x < 3/8 D. x < 8/3

 157. If $y = -(x^3/2 + x^3 - x^4/4 +)$, then x is
 A. $e^y - 1$ B. $\log(1 + C. e^y + 1)$ D. e^y

y)

158. If a, b, c are in G.P., then $\log_a m$, $\log_b m$, $\log_c n$ are in			
A. G.P.	B. H.P.	C. A.P.	D. none of the above

159. If A is a matrix of order 3 x 4, then each row of A has				
A. 12 elements	B. 3 elements	C. 7 elements	D. 4 elements	

 $\begin{array}{c} 160. \\ \text{If A} \\ = \end{array} \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}, n \in \mathbb{N}, \text{ then } A^{4n} \\ \text{equals} \end{array}$

161. If α , β , γ are the roots of the equation $x^2 + px + q = 0$, then the value of the determinant

α	β	γ	
β	γ	α	is
γ	α	β	

A. q B. 0 C. p D. $p^2 - 2q$

162. If A, B, C are	any three matrices, then	A' + B' + C' is equa	al to		
A. $A + B + C$	B. $(A + B + C)'$	C (A + B +	- $(A + B + C)$ D. a null matrix		
163. If A is any ma	atrix, then the product A.A	A, i.e., A^2 is define	d only when A	is a matrix of	order
A. m > n	B. $m = n$	C. m < n	D. r	$n \ge n$	
<i>→</i>	$\rightarrow \rightarrow$				
164. The area of	are				
the	i andi+ j adjacent				
which	is				
A. √2 B. 1/2	C. 2 D. 1				
165. If the directio	n cosines of line are (1/c,	1/c, 1/c), then			
A. 0 < c < 1	B. c > 2	C. c > 0	D. =	D. $\pm \sqrt{3}$	
		x - 2	y - 3	z - 4	
166. The sine of the	ne angle between the		=		— and
straight line		_	_	-	unu
		3	4	5	
the plane 2x - 2y -	+z = 5 is				
A. 10/(6√5)	B. 4/(5√2)	C. √ 2/10	D. (2√3)/5	
167. Constant term	in the expansion of (x -	$1/x)^{10}$ is			
A. 152	B 152	C 252	D. 2	252	
168 The latus rest	up of the ellipse $5x^2 + 0x^2$	$r^2 - 45$ is			
$100.$ The fatus feet $\sqrt{5/2}$	D 10/2	$C = \frac{4515}{2}$		512	
A. $5/5$	D. $10/3$	$C. (2 \sqrt{3})/3$	D. V	13/3	
109.1 + 1 + 1 +	(2n + 1) terms =				
A 1 B. 1	C 1 D. 1				
170. If the sum of	the series 2, 5, 8, 11,	is 60100. then n is			
A. 100	B. 200	C. 150	D. 2	250	
171. Two of the lin	nes represented by the equ	uation $ay^4 + bxy^3 $	$cx^2y^2 + dx^3y + dx^3y$	$-ex^4 = 0$ will	be
perpendicular, ther	1			2	_
A. $(b + d)(ad + be)$	$(e - a)^{2}(a + c + e) = 0$	B. $(b + d)(ad)$	+ be) + (e + a)	a + c + e = 0)
C. $(b - d)(ad - be) - be$	$(e - a)^{2}(a + c + e) = 0$	D. (b - d)(ad -	$(-be) + (e + a)^2$	(a+c+e)=0	
172. The probabili	ty that an event A happen	s on trial of an exr	periment is 0.4.	Three indepe	ndent
trials of the experim	ment are formed. The pro	bability that the ev	ent A happens	at least once i	S
A. 0.936	B. 0.784	C. 0.904	D. ().984	

173. The numbers are selected at random from 1, 2, 3, 100 and are multiplied, then the

probability correct to two places of decimals that the product thus obtained is divisible by 3, is A. 0.55 **B**. 0.44 C. 0.22 D. 0.33 174. If $p^2 + q^2 = 1$ and $m^2 + n^2 = 1$, then A. $| p_m + q_n B. | p_m + q_n C. | p_q + mnD. | p_q +$ |>1 $|\leq 0$ $| \leq 1$ mn | < 2175. In a football championship, there were played 153 matches. Every two team played one match with each other. The number of teams participating in the championship is A. 9 **B**. 11 C. 13 D. 18 176. The solution of |(x - 1) + 2| = 1 is A. 1 C. 5 B. 2 D. \$ 177. The equation $\log_e x + \log_e (1 + x) = 0$ can be written as A. $x^2 + x - e = 0$ B. $x^2 + x - 1 = 0$ C. $x^2 + x + 1 = 0$ D. $x^2 + xe - e = 0$ 178. Both the roots of the equation (x - b)(x - c) + (x - a)(x - c) + (x - a)(x - b) = 0 are always B. negative C. real D. imaginary A. positive 179. The value of tan x/tan 3x whenever defined never lies between A. 1/3 and B. 1/4 and C. 1/5 and D. 5 and 6 4 5 3

 180. Given (a + d) > (b + c) where a, b, c, d are real numbers, then

 A. a, b, c, d are in A.P.

 C. (a + b), (b + c), (c + d), (a + d) are in A.P.

 D. 1/(a + b), 1/(b + c), 1/(c + d), 1/(a + d) are in A.P.

 A. a, b, c, d are in A.P.

 B. 1/a, 1/b, 1/c, 1/d are in A.P.

 D. 1/(a + b), 1/(b + c), 1/(c + d), 1/(a + d) are in A.P.